Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. F. M. Arif
Documents disponibles écrits par cet auteur
Affiner la rechercheOptimized bands / Lifang Li in Transactions of the ASME. Journal of solar energy engineering, Vol. 133 N° 3 (N° Spécial) (Août 2011)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 09 p.
Titre : Optimized bands : a new design concept for concentrating solar parabolic mirrors Type de document : texte imprimé Auteurs : Lifang Li, Auteur ; Andres Kecskemethy, Auteur ; A. F. M. Arif, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Solar energy Langues : Anglais (eng) Mots-clés : Cost reduction Finite element analysis Mirrors Power generation economics Sheet materials Solar absorber-convertors Solar energy concentrators Solar power stations Index. décimale : 621.47 Résumé : Parabolic concentrator mirrors are an important component of many solar energy systems, particularly solar mirror collectors. Precision parabolic mirrors are expensive to fabricate and to transport. Here, a new concept for designing and fabricating precision parabolic mirrors is presented. The mirror is formed from a thin flat very flexible metal sheet with a highly reflective surface. Attached to the rear surface of the mirror sheet is a backbone band whose figure is optimized to form the reflective sheet into a precision parabola when its two ends are pulled toward each other. An analytical model to optimize the shape and thickness of the band is presented. The validity of the concept is demonstrated using Finite Element Analysis (FEA) and laboratory experiments. The concept would permit flat mirror elements to be easily fabricated and efficiently packaged and shipped to field sites and assembled into the parabolic trough concentrators with potentially substantial costs reductions compared with the conventional methods. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] [article] Optimized bands : a new design concept for concentrating solar parabolic mirrors [texte imprimé] / Lifang Li, Auteur ; Andres Kecskemethy, Auteur ; A. F. M. Arif, Auteur . - 2012 . - 09 p.
Solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 09 p.
Mots-clés : Cost reduction Finite element analysis Mirrors Power generation economics Sheet materials Solar absorber-convertors Solar energy concentrators Solar power stations Index. décimale : 621.47 Résumé : Parabolic concentrator mirrors are an important component of many solar energy systems, particularly solar mirror collectors. Precision parabolic mirrors are expensive to fabricate and to transport. Here, a new concept for designing and fabricating precision parabolic mirrors is presented. The mirror is formed from a thin flat very flexible metal sheet with a highly reflective surface. Attached to the rear surface of the mirror sheet is a backbone band whose figure is optimized to form the reflective sheet into a precision parabola when its two ends are pulled toward each other. An analytical model to optimize the shape and thickness of the band is presented. The validity of the concept is demonstrated using Finite Element Analysis (FEA) and laboratory experiments. The concept would permit flat mirror elements to be easily fabricated and efficiently packaged and shipped to field sites and assembled into the parabolic trough concentrators with potentially substantial costs reductions compared with the conventional methods. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...]