Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur David Padowitz
Documents disponibles écrits par cet auteur
Affiner la rechercheDevelopment of molten salt heat transfer fluid with low melting point and high thermal stability / Justin W. Raade in Transactions of the ASME. Journal of solar energy engineering, Vol. 133 N° 3 (N° Spécial) (Août 2011)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 06 p.
Titre : Development of molten salt heat transfer fluid with low melting point and high thermal stability Type de document : texte imprimé Auteurs : Justin W. Raade, Auteur ; David Padowitz, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : Solar energy Langues : Anglais (eng) Mots-clés : Heat transfer Melting point Solar energy concentrators Solar power stations Thermal stability Index. décimale : 621.47 Résumé : This paper describes an advanced heat transfer fluid (HTF) consisting of a novel mixture of inorganic salts with a low melting point and high thermal stability. These properties produce a broad operating range molten salt and enable effective thermal storage for parabolic trough concentrating solar power plants. Previous commercially available molten salt heat transfer fluids have a high melting point, typically 140 °C or higher, which limits their commercial use due to the risk of freezing. The advanced HTF embodies a novel composition of materials, consisting of a mixture of nitrate salts of lithium, sodium, potassium, cesium, and calcium. This unique mixture exploits eutectic behavior resulting in a low melting point of 65 °C and a thermal stability limit over 500 °C. The advanced HTF described in this work was developed using advanced experiment design and data analysis methods combined with a powerful high throughput experimental workflow. Over 5000 unique mixtures of inorganic salt were tested during the development process. Additional work is ongoing to fully characterize the relevant thermophysical properties of the HTF and to assess its long term performance in realistic operating conditions for concentrating solar power applications or other high temperature processes. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] [article] Development of molten salt heat transfer fluid with low melting point and high thermal stability [texte imprimé] / Justin W. Raade, Auteur ; David Padowitz, Auteur . - 2012 . - 06 p.
Solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 06 p.
Mots-clés : Heat transfer Melting point Solar energy concentrators Solar power stations Thermal stability Index. décimale : 621.47 Résumé : This paper describes an advanced heat transfer fluid (HTF) consisting of a novel mixture of inorganic salts with a low melting point and high thermal stability. These properties produce a broad operating range molten salt and enable effective thermal storage for parabolic trough concentrating solar power plants. Previous commercially available molten salt heat transfer fluids have a high melting point, typically 140 °C or higher, which limits their commercial use due to the risk of freezing. The advanced HTF embodies a novel composition of materials, consisting of a mixture of nitrate salts of lithium, sodium, potassium, cesium, and calcium. This unique mixture exploits eutectic behavior resulting in a low melting point of 65 °C and a thermal stability limit over 500 °C. The advanced HTF described in this work was developed using advanced experiment design and data analysis methods combined with a powerful high throughput experimental workflow. Over 5000 unique mixtures of inorganic salt were tested during the development process. Additional work is ongoing to fully characterize the relevant thermophysical properties of the HTF and to assess its long term performance in realistic operating conditions for concentrating solar power applications or other high temperature processes. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...]