Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Volkan Coskun
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system / Matthew Roesle in Transactions of the ASME. Journal of solar energy engineering, Vol. 133 N° 3 (N° Spécial) (Août 2011)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 05 p.
Titre : Numerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system Type de document : texte imprimé Auteurs : Matthew Roesle, Auteur ; Volkan Coskun, Auteur ; Aldo Steinfeld, Auteur Année de publication : 2012 Article en page(s) : 05 p. Note générale : Solar energy Langues : Anglais (eng) Mots-clés : Computational fluid dynamics Convection Design engineering Flow simulation Heat conduction Heat losses Heat radiation Monte Carlo methods Pipe flow Radiative transfer Rarefied fluid dynamics Solar absorber-convertors Solar power stations Vacuum pumps Index. décimale : 621.47 Résumé : In current designs of parabolic trough collectors for concentrating solar power plants, the absorber tube is manufactured in segments that are individually insulated with glass vacuum jackets. During the lifetime of a power plant, some segments lose vacuum and thereafter suffer from significant convective heat loss. An alternative to this design is to use a vacuum pump to actively maintain low pressure in a long section of absorber with a continuous vacuum jacket. A detailed thermal model of such a configuration is needed to inform design efforts for such a receiver. This paper describes a combined conduction, convection, and radiation heat transfer model for a receiver that includes the effects of nonuniform solar flux on the absorber tube and vacuum jacket as well as detailed analysis of conduction through the rarefied gas in the annular gap inside the vacuum jacket. The model is implemented in commercial CFD software coupled to a Monte Carlo ray-tracing code. The results of simulations performed for a two-dimensional cross-section of a receiver are reported for various conditions. The parameters for the model are chosen to match the current generation of parabolic trough receivers, and the simulation results correspond well with experimental measurements. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] [article] Numerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system [texte imprimé] / Matthew Roesle, Auteur ; Volkan Coskun, Auteur ; Aldo Steinfeld, Auteur . - 2012 . - 05 p.
Solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 05 p.
Mots-clés : Computational fluid dynamics Convection Design engineering Flow simulation Heat conduction Heat losses Heat radiation Monte Carlo methods Pipe flow Radiative transfer Rarefied fluid dynamics Solar absorber-convertors Solar power stations Vacuum pumps Index. décimale : 621.47 Résumé : In current designs of parabolic trough collectors for concentrating solar power plants, the absorber tube is manufactured in segments that are individually insulated with glass vacuum jackets. During the lifetime of a power plant, some segments lose vacuum and thereafter suffer from significant convective heat loss. An alternative to this design is to use a vacuum pump to actively maintain low pressure in a long section of absorber with a continuous vacuum jacket. A detailed thermal model of such a configuration is needed to inform design efforts for such a receiver. This paper describes a combined conduction, convection, and radiation heat transfer model for a receiver that includes the effects of nonuniform solar flux on the absorber tube and vacuum jacket as well as detailed analysis of conduction through the rarefied gas in the annular gap inside the vacuum jacket. The model is implemented in commercial CFD software coupled to a Monte Carlo ray-tracing code. The results of simulations performed for a two-dimensional cross-section of a receiver are reported for various conditions. The parameters for the model are chosen to match the current generation of parabolic trough receivers, and the simulation results correspond well with experimental measurements. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...]