Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Christian A. Gueymard
Documents disponibles écrits par cet auteur
Affiner la rechercheUncertainties in modeled direct irradiance around the Sahara as affected by aerosols / Christian A. Gueymard in Transactions of the ASME. Journal of solar energy engineering, Vol. 133 N° 3 (N° Spécial) (Août 2011)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 13 p.
Titre : Uncertainties in modeled direct irradiance around the Sahara as affected by aerosols : are current datasets of bankable quality? Type de document : texte imprimé Auteurs : Christian A. Gueymard, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : Solar energy Langues : Anglais (eng) Mots-clés : Aerosols Photovoltaic power systems Solar absorber-convertors Solar power stations Index. décimale : 621.47 Résumé : The design, energy output, and cost effectiveness of solar projects using concentrators critically depend on the resource in direct normal irradiance (DNI). Many modeled DNI datasets now exist, and a recent preliminary study has shown some areas of serious disagreement in Europe. So far, no rigorous performance assessment has been undertaken for other parts of the world. The present contribution focuses on North Africa and bordering regions, which have great solar potential for power plants based on thermal or photovoltaic concentration systems. The mean monthly and annual performance of eight different modeled datasets providing DNI is analyzed here, with respect to measured radiation data at 14 sites, which are used as “ground-truth”. Relatively good results are generally obtained for sites in southern Europe. Serious problems, however, are found at various sites in North Africa or the Middle East. Most of these problems appear linked to inadequate aerosol optical depth data used by the models, and to the dust storms from the Sahara that regularly, and strongly, modify the aerosol regime. A method that can potentially correct these problems, or allow for model benchmarking based on a reference aerosol database, is proposed. The bankability of current datasets is questioned. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] [article] Uncertainties in modeled direct irradiance around the Sahara as affected by aerosols : are current datasets of bankable quality? [texte imprimé] / Christian A. Gueymard, Auteur . - 2012 . - 13 p.
Solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 13 p.
Mots-clés : Aerosols Photovoltaic power systems Solar absorber-convertors Solar power stations Index. décimale : 621.47 Résumé : The design, energy output, and cost effectiveness of solar projects using concentrators critically depend on the resource in direct normal irradiance (DNI). Many modeled DNI datasets now exist, and a recent preliminary study has shown some areas of serious disagreement in Europe. So far, no rigorous performance assessment has been undertaken for other parts of the world. The present contribution focuses on North Africa and bordering regions, which have great solar potential for power plants based on thermal or photovoltaic concentration systems. The mean monthly and annual performance of eight different modeled datasets providing DNI is analyzed here, with respect to measured radiation data at 14 sites, which are used as “ground-truth”. Relatively good results are generally obtained for sites in southern Europe. Serious problems, however, are found at various sites in North Africa or the Middle East. Most of these problems appear linked to inadequate aerosol optical depth data used by the models, and to the dust storms from the Sahara that regularly, and strongly, modify the aerosol regime. A method that can potentially correct these problems, or allow for model benchmarking based on a reference aerosol database, is proposed. The bankability of current datasets is questioned. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...]