Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Q. Jane Wang
Documents disponibles écrits par cet auteur
Affiner la rechercheEffect of stiff coatings on EHL film thickness in point contacts / Yuchuan Liu in Transactions of the ASME . Journal of tribology, Vol. 130 n°3 (Juillet 2008)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 130 n°3 (Juillet 2008) . - 6 p.
Titre : Effect of stiff coatings on EHL film thickness in point contacts Type de document : texte imprimé Auteurs : Yuchuan Liu, Auteur ; Q. Jane Wang, Auteur ; Dong Zhu, Auteur Année de publication : 2008 Article en page(s) : 6 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Coating processes Coatings Film thickness Thickness Lubrication Résumé : Coatings are widely used for interface performance enhancement and component life improvement, as well as for corrosion prevention and surface decoration. More and more mechanical components, especially those working under severe conditions, are coated with stiff (hard) thin coatings. However, the effects of coatings on lubrication characteristics, such as film thickness and friction, have not been well understood, and designing coating for optimal tribological performance is a grand challenge. In this paper, the influences of coating material properties and coating thickness on lubricant film thickness are investigated based on a point-contact isothermal elastohydrodynamic lubrication (EHL) model developed recently by the authors. The results present the trend of minimum film thickness variation as a function of coating thickness and elastic modulus under a wide range of working conditions. Curve fitting of numerical results indicates that the maximum increase in minimum film thickness, Imax, and the corresponding optimal dimensionless coating thickness, H2max, can be expressed in the following forms: Imax=0.769M0.0238R0.02972L0.1376exp(−0.0243ln2L) and H2max=0.049M0.4557R−0.17222L0.7611exp(−0.0504ln2M−0.0921ln2L). These formulas can be used to estimate the effect of coatings on film thickness for EHL applications. En ligne : http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1468066 [article] Effect of stiff coatings on EHL film thickness in point contacts [texte imprimé] / Yuchuan Liu, Auteur ; Q. Jane Wang, Auteur ; Dong Zhu, Auteur . - 2008 . - 6 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 130 n°3 (Juillet 2008) . - 6 p.
Mots-clés : Coating processes Coatings Film thickness Thickness Lubrication Résumé : Coatings are widely used for interface performance enhancement and component life improvement, as well as for corrosion prevention and surface decoration. More and more mechanical components, especially those working under severe conditions, are coated with stiff (hard) thin coatings. However, the effects of coatings on lubrication characteristics, such as film thickness and friction, have not been well understood, and designing coating for optimal tribological performance is a grand challenge. In this paper, the influences of coating material properties and coating thickness on lubricant film thickness are investigated based on a point-contact isothermal elastohydrodynamic lubrication (EHL) model developed recently by the authors. The results present the trend of minimum film thickness variation as a function of coating thickness and elastic modulus under a wide range of working conditions. Curve fitting of numerical results indicates that the maximum increase in minimum film thickness, Imax, and the corresponding optimal dimensionless coating thickness, H2max, can be expressed in the following forms: Imax=0.769M0.0238R0.02972L0.1376exp(−0.0243ln2L) and H2max=0.049M0.4557R−0.17222L0.7611exp(−0.0504ln2M−0.0921ln2L). These formulas can be used to estimate the effect of coatings on film thickness for EHL applications. En ligne : http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1468066 Elastohydrodynamic lubrication / Dong Zhu in Transactions of the ASME . Journal of tribology, Vol. 133 N° 4 (Octobre 2011)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 133 N° 4 (Octobre 2011) . - 14 p.
Titre : Elastohydrodynamic lubrication : a gateway to interfacial mechanics—review and prospect Type de document : texte imprimé Auteurs : Dong Zhu, Auteur ; Q. Jane Wang, Auteur Année de publication : 2012 Article en page(s) : 14 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Deformation Elasticity High-pressure effects Hydrodynamics Interface phenomena Lubrication Mechanical contact Viscosity Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Elastohydrodynamic Lubrication (EHL) is commonly known as a mode of fluid-film lubrication in which the mechanism of hydrodynamic film formation is enhanced by surface elastic deformation and lubricant viscosity increase due to high pressure. It has been an active and challenging field of research since the 1950s. Significant breakthroughs achieved in the last 10–15 years are largely in the area of mixed EHL, in which surface asperity contact and hydrodynamic lubricant film coexist. Mixed EHL is of the utmost importance not only because most power-transmitting components operate in this regime, but also due to its theoretical universality that dry contact and full-film lubrication are in fact its special cases under extreme conditions. In principle, mixed EHL has included the basic physical elements for modeling contact, or hydrodynamic lubrication, or both together. The unified mixed lubrication models that have recently been developed are now capable of simulating the entire transition of interfacial status from full-film and mixed lubrication down to dry contact with an integrated mathematic formulation and numerical approach. This has indeed bridged the two branches of engineering science, contact mechanics, and hydrodynamic lubrication theory, which have been traditionally separate since the 1880s mainly due to the lack of powerful analytical and numerical tools. The recent advancement in mixed EHL begins to bring contact and lubrication together, and thus an evolving concept of “Interfacial Mechanics” can be proposed in order to describe interfacial phenomena more precisely and collaborate with research in other related fields, such as interfacial physics and chemistry, more closely. This review paper briefly presents snapshots of the history of EHL research, and also expresses the authors' opinions about its further development as a gateway to interfacial mechanics. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] Elastohydrodynamic lubrication : a gateway to interfacial mechanics—review and prospect [texte imprimé] / Dong Zhu, Auteur ; Q. Jane Wang, Auteur . - 2012 . - 14 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 133 N° 4 (Octobre 2011) . - 14 p.
Mots-clés : Deformation Elasticity High-pressure effects Hydrodynamics Interface phenomena Lubrication Mechanical contact Viscosity Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Elastohydrodynamic Lubrication (EHL) is commonly known as a mode of fluid-film lubrication in which the mechanism of hydrodynamic film formation is enhanced by surface elastic deformation and lubricant viscosity increase due to high pressure. It has been an active and challenging field of research since the 1950s. Significant breakthroughs achieved in the last 10–15 years are largely in the area of mixed EHL, in which surface asperity contact and hydrodynamic lubricant film coexist. Mixed EHL is of the utmost importance not only because most power-transmitting components operate in this regime, but also due to its theoretical universality that dry contact and full-film lubrication are in fact its special cases under extreme conditions. In principle, mixed EHL has included the basic physical elements for modeling contact, or hydrodynamic lubrication, or both together. The unified mixed lubrication models that have recently been developed are now capable of simulating the entire transition of interfacial status from full-film and mixed lubrication down to dry contact with an integrated mathematic formulation and numerical approach. This has indeed bridged the two branches of engineering science, contact mechanics, and hydrodynamic lubrication theory, which have been traditionally separate since the 1880s mainly due to the lack of powerful analytical and numerical tools. The recent advancement in mixed EHL begins to bring contact and lubrication together, and thus an evolving concept of “Interfacial Mechanics” can be proposed in order to describe interfacial phenomena more precisely and collaborate with research in other related fields, such as interfacial physics and chemistry, more closely. This review paper briefly presents snapshots of the history of EHL research, and also expresses the authors' opinions about its further development as a gateway to interfacial mechanics. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] Semi-analytical viscoelastic contact modeling of polymer-based materials / W. Wayne Chen in Transactions of the ASME . Journal of tribology, Vol. 133 N° 4 (Octobre 2011)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 133 N° 4 (Octobre 2011) . - 10 p.
Titre : Semi-analytical viscoelastic contact modeling of polymer-based materials Type de document : texte imprimé Auteurs : W. Wayne Chen, Auteur ; Q. Jane Wang, Auteur ; Z. Huan, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Triboblogy Langues : Anglais (eng) Mots-clés : Conjugate gradient methods Fast Fourier transforms Indentation Mechanical contact Polymers Surface roughness Time-domain analysis Transient analysis Viscoelasticity Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Contact of viscoelastic materials with complicated properties and surface topography require numerical solution approaches. This paper presents a 3-D semianalytical contact model for viscoelastic materials. With the hereditary integral operator and elastic-viscoelastic correspondence principle, surface displacement is expressed in terms of viscoelastic creep compliance and contact pressure distribution history in the course of a contact process. Through discretizing the contact equations in both spatial and temporal dimensions, a numerical algorithm based on the robust Conjugate Gradient method and Fast Fourier transform has been developed to solve the normal approach, contact pressure, and real contact area simultaneously. The transient contact analysis in the time domain is computationally expensive. The fast Fourier transform algorithm can help reduce the computation cost significantly. The comparisons of the new numerical results with an analytical viscoelastic contact solution for Maxwell materials and with an indentation test measurement reported in the literature has validated and demonstrated the accuracy of the proposed model. Moreover, the present model has been used to simulate the contact between a polymethyl methacrylate (PMMA) substrate and a rigid sphere driven by step, ramped, and harmonic normal loads. The validated model and numerical method can successfully compute the viscoelastic contact responses of polymer-based materials with time-dependent properties and surface roughness subjected to complicated loading profiles. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] Semi-analytical viscoelastic contact modeling of polymer-based materials [texte imprimé] / W. Wayne Chen, Auteur ; Q. Jane Wang, Auteur ; Z. Huan, Auteur . - 2012 . - 10 p.
Triboblogy
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 133 N° 4 (Octobre 2011) . - 10 p.
Mots-clés : Conjugate gradient methods Fast Fourier transforms Indentation Mechanical contact Polymers Surface roughness Time-domain analysis Transient analysis Viscoelasticity Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Contact of viscoelastic materials with complicated properties and surface topography require numerical solution approaches. This paper presents a 3-D semianalytical contact model for viscoelastic materials. With the hereditary integral operator and elastic-viscoelastic correspondence principle, surface displacement is expressed in terms of viscoelastic creep compliance and contact pressure distribution history in the course of a contact process. Through discretizing the contact equations in both spatial and temporal dimensions, a numerical algorithm based on the robust Conjugate Gradient method and Fast Fourier transform has been developed to solve the normal approach, contact pressure, and real contact area simultaneously. The transient contact analysis in the time domain is computationally expensive. The fast Fourier transform algorithm can help reduce the computation cost significantly. The comparisons of the new numerical results with an analytical viscoelastic contact solution for Maxwell materials and with an indentation test measurement reported in the literature has validated and demonstrated the accuracy of the proposed model. Moreover, the present model has been used to simulate the contact between a polymethyl methacrylate (PMMA) substrate and a rigid sphere driven by step, ramped, and harmonic normal loads. The validated model and numerical method can successfully compute the viscoelastic contact responses of polymer-based materials with time-dependent properties and surface roughness subjected to complicated loading profiles. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] A simple method to calculate contact factor used in average flow model / Fanming Meng in Transactions of the ASME . Journal of tribology, Vol. 132 N° 2 (Avril 2010)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 2 (Avril 2010) . - 04 p.
Titre : A simple method to calculate contact factor used in average flow model Type de document : texte imprimé Auteurs : Fanming Meng, Auteur ; Q. Jane Wang, Auteur ; Diann Hua, Auteur Année de publication : 2011 Article en page(s) : 04 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Density functional theory Mechanical contact Rough surfaces Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The average flow model proposed by Patir and Cheng offers a great convenience for the analysis of rough surfaces in lubrication. The contact factor introduced by Wu and Zheng helps to solve a difficulty in local film evaluation using the average flow model. This paper reports a simple method to calculate the contact factor. Method validation is demonstrated by the comparison of the contact factors for Gaussian surfaces obtained with the present method and the fitting formula of Wu and Zheng. The proposed method cannot only easily compute the contact factor values for Gaussian surfaces; it can also be used for those of non-Gaussian and measured surfaces, especially those with unknown probability density distribution of the roughness height. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] A simple method to calculate contact factor used in average flow model [texte imprimé] / Fanming Meng, Auteur ; Q. Jane Wang, Auteur ; Diann Hua, Auteur . - 2011 . - 04 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 2 (Avril 2010) . - 04 p.
Mots-clés : Density functional theory Mechanical contact Rough surfaces Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The average flow model proposed by Patir and Cheng offers a great convenience for the analysis of rough surfaces in lubrication. The contact factor introduced by Wu and Zheng helps to solve a difficulty in local film evaluation using the average flow model. This paper reports a simple method to calculate the contact factor. Method validation is demonstrated by the comparison of the contact factors for Gaussian surfaces obtained with the present method and the fitting formula of Wu and Zheng. The proposed method cannot only easily compute the contact factor values for Gaussian surfaces; it can also be used for those of non-Gaussian and measured surfaces, especially those with unknown probability density distribution of the roughness height. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] Steady-state hydrodynamic lubrication modeled with the payvar-salant mass conservation model / Shangwu Xiong in Transactions of the ASME . Journal of tribology, Vol. 134 N° 3 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 3 (Juillet 2012) . - 16 p.
Titre : Steady-state hydrodynamic lubrication modeled with the payvar-salant mass conservation model Type de document : texte imprimé Auteurs : Shangwu Xiong, Auteur ; Q. Jane Wang, Auteur Année de publication : 2012 Article en page(s) : 16 p. Note générale : tribology Langues : Anglais (eng) Mots-clés : mass conservation; finite difference; hydrodynamic bearings Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Steady-state smooth surface hydrodynamic lubrications of a pocketed pad bearing, an angularly grooved thrust bearing, and a plain journal bearing are simulated with the mass-conservation model proposed by Payvar and Salant. Three different finite difference schemes, i.e., the harmonic mean scheme, arithmetic mean scheme, and middle point scheme, of the interfacial diffusion coefficients for the Poiseuille terms are investigated by using a uniform and nonuniform set of meshes. The research suggests that for the problems with continuous film thickness and pressure distributions, the results obtained with these numerical schemes generally well agree with those found in the literatures. However, if the film thickness is discontinuous while the pressure is continuous, there may be an obvious deviation. Compared with both the analytical solution and other two schemes, the harmonic mean scheme may overestimate or underestimate the pressure. In order to overcome this problem artificial nodes should be inserted along the wall of the bearings where discontinuous film thickness appears. Moreover, the computation efficiency of the three solvers, i.e., the direct solver, the line-by-line the tridiagonal matrix algorithm (TDMA) solver, and the global successive over-relaxation (SOR) solver, are investigated. The results indicate that the direct solver has the best computational efficiency for a small-scale lubrication problem (around 40 thousand nodes). TDMA solver is more robust and requires the least storage, but the SOR solver may work faster than TDMA solver for thrust bearing lubrication problems. Numerical simulations of a group of grooved thrust bearings were conducted for the cases of different outer and inner radii, groove depth and width, velocity, viscosity, and reference film thickness. A curve fitting formula has been obtained from the numerical results to express the correlation of load, maximum pressure, and friction of an angularly grooved thrust bearing in lubrication. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000003 [...] [article] Steady-state hydrodynamic lubrication modeled with the payvar-salant mass conservation model [texte imprimé] / Shangwu Xiong, Auteur ; Q. Jane Wang, Auteur . - 2012 . - 16 p.
tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 3 (Juillet 2012) . - 16 p.
Mots-clés : mass conservation; finite difference; hydrodynamic bearings Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Steady-state smooth surface hydrodynamic lubrications of a pocketed pad bearing, an angularly grooved thrust bearing, and a plain journal bearing are simulated with the mass-conservation model proposed by Payvar and Salant. Three different finite difference schemes, i.e., the harmonic mean scheme, arithmetic mean scheme, and middle point scheme, of the interfacial diffusion coefficients for the Poiseuille terms are investigated by using a uniform and nonuniform set of meshes. The research suggests that for the problems with continuous film thickness and pressure distributions, the results obtained with these numerical schemes generally well agree with those found in the literatures. However, if the film thickness is discontinuous while the pressure is continuous, there may be an obvious deviation. Compared with both the analytical solution and other two schemes, the harmonic mean scheme may overestimate or underestimate the pressure. In order to overcome this problem artificial nodes should be inserted along the wall of the bearings where discontinuous film thickness appears. Moreover, the computation efficiency of the three solvers, i.e., the direct solver, the line-by-line the tridiagonal matrix algorithm (TDMA) solver, and the global successive over-relaxation (SOR) solver, are investigated. The results indicate that the direct solver has the best computational efficiency for a small-scale lubrication problem (around 40 thousand nodes). TDMA solver is more robust and requires the least storage, but the SOR solver may work faster than TDMA solver for thrust bearing lubrication problems. Numerical simulations of a group of grooved thrust bearings were conducted for the cases of different outer and inner radii, groove depth and width, velocity, viscosity, and reference film thickness. A curve fitting formula has been obtained from the numerical results to express the correlation of load, maximum pressure, and friction of an angularly grooved thrust bearing in lubrication. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000003 [...] The Shear-Thinning Elastohydrodynamic Film Thickness of a Two-Component Mixture / Yuchuan Liu in Transactions of the ASME . Journal of tribology, Vol. 130 n°2 (Mars/Avril 2008)
PermalinkThermomechanical analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening / W. Wayne Chen in Transactions of the ASME . Journal of tribology, Vol. 130 N° 4 (Octobre 2008)
PermalinkThree-dimensional plasto-elastohydrodynamic lubrication (PEHL) for surfaces with irregularities / Ning Ren in Transactions of the ASME . Journal of tribology, Vol. 133 N° 3 (Juillet 2011)
Permalink