Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur V. Novak
Documents disponibles écrits par cet auteur
Affiner la rechercheIntegrated multiscale methodology for virtual prototyping of porous catalysts / V. Novak in Industrial & engineering chemistry research, Vol. 50 N° 23 (Décembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 23 (Décembre 2011) . - pp.12904–12914
Titre : Integrated multiscale methodology for virtual prototyping of porous catalysts Type de document : texte imprimé Auteurs : V. Novak, Auteur ; P. Koci, Auteur ; F. Stepanek, Auteur Année de publication : 2012 Article en page(s) : pp.12904–12914 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Porous catalysts Résumé : The microstructure of the support determines a key property of porous catalysts—effective diffusivity. Typically, supporting materials with bimodal pore size distribution are used that involve both meso- and macropores. Spatial distribution of active metal crystallites within the porous support then influences reaction rates and conversions. To optimize the catalyst support microstructure and ultimately the whole catalyst, it is necessary to relate quantitatively the morphological features of the porous structure both to its preparation conditions and to the final transport properties and catalyst performance under reaction conditions. In this paper we demonstrate the application of novel models based on the generalized volume-of-fluid method and 3D digital reconstruction of a porous structure. The procedure includes simulation of porous support formation (virtual packing of primary particles of defined shapes and sizes), drying and crystallization of impregnated metal solution (growth of metal nanoparticles), and solution of reaction and transport within the final virtual catalyst structure to obtain volume-averaged reaction rates that are then used in a full-scale model of a catalytic monolith reactor. A parametric study is performed to investigate the effects of the sizes of primary particles (influencing the meso- and macroporosity and pore sizes) and active metal impregnation conditions (influencing the distribution of active catalytic surface area) on the macroscopic activity of a catalytic monolith with Pt/γ-Al2O3 washcoat used for automotive exhaust gas aftertreatment. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie2003347 [article] Integrated multiscale methodology for virtual prototyping of porous catalysts [texte imprimé] / V. Novak, Auteur ; P. Koci, Auteur ; F. Stepanek, Auteur . - 2012 . - pp.12904–12914.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 23 (Décembre 2011) . - pp.12904–12914
Mots-clés : Porous catalysts Résumé : The microstructure of the support determines a key property of porous catalysts—effective diffusivity. Typically, supporting materials with bimodal pore size distribution are used that involve both meso- and macropores. Spatial distribution of active metal crystallites within the porous support then influences reaction rates and conversions. To optimize the catalyst support microstructure and ultimately the whole catalyst, it is necessary to relate quantitatively the morphological features of the porous structure both to its preparation conditions and to the final transport properties and catalyst performance under reaction conditions. In this paper we demonstrate the application of novel models based on the generalized volume-of-fluid method and 3D digital reconstruction of a porous structure. The procedure includes simulation of porous support formation (virtual packing of primary particles of defined shapes and sizes), drying and crystallization of impregnated metal solution (growth of metal nanoparticles), and solution of reaction and transport within the final virtual catalyst structure to obtain volume-averaged reaction rates that are then used in a full-scale model of a catalytic monolith reactor. A parametric study is performed to investigate the effects of the sizes of primary particles (influencing the meso- and macroporosity and pore sizes) and active metal impregnation conditions (influencing the distribution of active catalytic surface area) on the macroscopic activity of a catalytic monolith with Pt/γ-Al2O3 washcoat used for automotive exhaust gas aftertreatment. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie2003347