Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ilmar F. Santos
Documents disponibles écrits par cet auteur
Affiner la rechercheElastohydrodynamics applied to active tilting-pad journal bearings / Asger M. Haugaard in Transactions of the ASME . Journal of tribology, Vol. 132 N° 2 (Avril 2010)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 2 (Avril 2010) . - 10 p.
Titre : Elastohydrodynamics applied to active tilting-pad journal bearings Type de document : texte imprimé Auteurs : Asger M. Haugaard, Auteur ; Ilmar F. Santos, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Differential equations Elasticity Elastodynamics Finite element analysis Friction Hydrodynamics Liquid films Machine bearings Oils Rotors Valves Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The static and dynamic properties of tilting-pad journal bearings with controllable radial oil injection are investigated theoretically. The tilting pads are modeled as flexible structures and their behavior is described using a three-dimensional finite element framework and linear elasticity. The oil film pressure and flow are considered to follow the modified Reynolds equation, which includes the contribution from controllable radial oil injection. The Reynolds equation is solved using a two-dimensional finite element mesh. The rotor is considered to be rigid in terms of shape and size, but lateral movement is permitted. The servovalve flow is governed by a second order ordinary differential equation, where the right hand side is controlled by an electronic input signal. The constitutive flow-pressure relationship of the injection orifices is that of a fully developed laminar velocity profile and the servovalve is introduced into the system of equations by a mass conservation consideration. The Reynolds equation is linearized with respect to displacements and velocities of the nodal degrees of freedom. When all nodal points satisfy static equilibrium, the system of equations is dynamically perturbed and subsequently condensed to a 2×2 system, keeping only the lateral motion of the rotor. As expected, bearing dynamic coefficients are heavily influenced by the control parameters and pad compliance. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] Elastohydrodynamics applied to active tilting-pad journal bearings [texte imprimé] / Asger M. Haugaard, Auteur ; Ilmar F. Santos, Auteur . - 2011 . - 10 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 2 (Avril 2010) . - 10 p.
Mots-clés : Differential equations Elasticity Elastodynamics Finite element analysis Friction Hydrodynamics Liquid films Machine bearings Oils Rotors Valves Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The static and dynamic properties of tilting-pad journal bearings with controllable radial oil injection are investigated theoretically. The tilting pads are modeled as flexible structures and their behavior is described using a three-dimensional finite element framework and linear elasticity. The oil film pressure and flow are considered to follow the modified Reynolds equation, which includes the contribution from controllable radial oil injection. The Reynolds equation is solved using a two-dimensional finite element mesh. The rotor is considered to be rigid in terms of shape and size, but lateral movement is permitted. The servovalve flow is governed by a second order ordinary differential equation, where the right hand side is controlled by an electronic input signal. The constitutive flow-pressure relationship of the injection orifices is that of a fully developed laminar velocity profile and the servovalve is introduced into the system of equations by a mass conservation consideration. The Reynolds equation is linearized with respect to displacements and velocities of the nodal degrees of freedom. When all nodal points satisfy static equilibrium, the system of equations is dynamically perturbed and subsequently condensed to a 2×2 system, keeping only the lateral motion of the rotor. As expected, bearing dynamic coefficients are heavily influenced by the control parameters and pad compliance. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] On the nonlinear dynamics of two types of backup bearings / Said Lahriri in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 13 p.
Titre : On the nonlinear dynamics of two types of backup bearings : theoretical and experimental aspects Type de document : texte imprimé Auteurs : Said Lahriri, Auteur ; Ilmar F. Santos, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : rotor; stator; aerodynamic and hydrodynamic forces; bearings; mathematical model Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The possible contact between rotor and stator can for some cases be considered a serious malfunction that may lead to catastrophic failure. Rotor rub is considered a secondary phenomenon caused by a primary source that leads to a disruption of the normal operational condition. It arises from sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion, impacting the stator. This event results in persistent coupled lateral vibration of the rotor and stator. This paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction. The idea is to utilize pin connections that center the rotor during impacts. In this way, the rotor is forced to the center and the lateral motion is mitigated. The four pins are passively adjustable, which allows the clearance to be customized. A mathematical model has been developed to capture phenomena arising from impact for the conventional backup bearing (annular guide) and for the new disk-pin backup bearing. For the conventional annular guide setup, it is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e., an electric motor without any kind of velocity feedback control, it is even possible to almost stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. The vibration of the housing is coupled through the interaction force. The experimental and numerical analysis shows that for the conventional annular guide setup, the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. However, by employing the new disk-pin design the analysis shows that the rotor at impact is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] On the nonlinear dynamics of two types of backup bearings : theoretical and experimental aspects [texte imprimé] / Said Lahriri, Auteur ; Ilmar F. Santos, Auteur . - 2012 . - 13 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 13 p.
Mots-clés : rotor; stator; aerodynamic and hydrodynamic forces; bearings; mathematical model Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The possible contact between rotor and stator can for some cases be considered a serious malfunction that may lead to catastrophic failure. Rotor rub is considered a secondary phenomenon caused by a primary source that leads to a disruption of the normal operational condition. It arises from sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion, impacting the stator. This event results in persistent coupled lateral vibration of the rotor and stator. This paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction. The idea is to utilize pin connections that center the rotor during impacts. In this way, the rotor is forced to the center and the lateral motion is mitigated. The four pins are passively adjustable, which allows the clearance to be customized. A mathematical model has been developed to capture phenomena arising from impact for the conventional backup bearing (annular guide) and for the new disk-pin backup bearing. For the conventional annular guide setup, it is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e., an electric motor without any kind of velocity feedback control, it is even possible to almost stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. The vibration of the housing is coupled through the interaction force. The experimental and numerical analysis shows that for the conventional annular guide setup, the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. However, by employing the new disk-pin design the analysis shows that the rotor at impact is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...]