Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J. S. Green
Documents disponibles écrits par cet auteur
Affiner la rechercheA numerical study of labyrinth seal flutter / L. Di Mare in Transactions of the ASME . Journal of tribology, Vol. 132 N° 2 (Avril 2010)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 2 (Avril 2010) . - 07 p.
Titre : A numerical study of labyrinth seal flutter Type de document : texte imprimé Auteurs : L. Di Mare, Auteur ; M. Imregun, Auteur ; J. S. Green, Auteur Année de publication : 2011 Article en page(s) : 07 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Aerodynamics Elasticity Finite element analysis Gas turbines Navier-Stokes equations Seals (stoppers) Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : A numerical study of a labyrinth-type turbine seal flutter in a large turbofan engine is described. The flutter analysis was conducted using a coupled fluid-structure interaction code, which was originally developed for turbomachinery blade applications. The flow model is based on an unstructured, implicit Reynolds-averaged Navier–Stokes solver. The solver is coupled to a modal model for the structure obtained from a standard structural finite element code. During the aeroelasticity computations, the aerodynamic grid is moved at each time step to follow the structural motion, which is due to unsteady aerodynamic forces applied onto the structure by the fluid. Such an integrated time-domain approach allows the direct computation of aeroelastic time histories from which the aerodynamic damping, and hence, the flutter stability, can be determined. Two different configurations of a large-diameter aeroengine labyrinth seal were studied. The first configuration is the initial design with four fins, which exhibited flutter instability during testing. The second configuration is a modified design with three fins and a stiffened ring. The steady-state flow was computed for both configurations, and good agreement was reached with available reference data. An aeroelasticity analysis was conducted next for both configurations, and the model was able to predict the observed flutter behavior in both cases. A flutter mechanism is proposed, based on the matching of the structural frequencies to the frequencies of waves traveling in the fluid, in the interfin cavities and in the high- and low-pressure cavities. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] A numerical study of labyrinth seal flutter [texte imprimé] / L. Di Mare, Auteur ; M. Imregun, Auteur ; J. S. Green, Auteur . - 2011 . - 07 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 2 (Avril 2010) . - 07 p.
Mots-clés : Aerodynamics Elasticity Finite element analysis Gas turbines Navier-Stokes equations Seals (stoppers) Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : A numerical study of a labyrinth-type turbine seal flutter in a large turbofan engine is described. The flutter analysis was conducted using a coupled fluid-structure interaction code, which was originally developed for turbomachinery blade applications. The flow model is based on an unstructured, implicit Reynolds-averaged Navier–Stokes solver. The solver is coupled to a modal model for the structure obtained from a standard structural finite element code. During the aeroelasticity computations, the aerodynamic grid is moved at each time step to follow the structural motion, which is due to unsteady aerodynamic forces applied onto the structure by the fluid. Such an integrated time-domain approach allows the direct computation of aeroelastic time histories from which the aerodynamic damping, and hence, the flutter stability, can be determined. Two different configurations of a large-diameter aeroengine labyrinth seal were studied. The first configuration is the initial design with four fins, which exhibited flutter instability during testing. The second configuration is a modified design with three fins and a stiffened ring. The steady-state flow was computed for both configurations, and good agreement was reached with available reference data. An aeroelasticity analysis was conducted next for both configurations, and the model was able to predict the observed flutter behavior in both cases. A flutter mechanism is proposed, based on the matching of the structural frequencies to the frequencies of waves traveling in the fluid, in the interfin cavities and in the high- and low-pressure cavities. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...]