Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Nathan A. Mauntler
Documents disponibles écrits par cet auteur
Affiner la rechercheComparison between elastic foundation and contact force models in wear analysis of planar multibody system / Saad Mukras in Transactions of the ASME . Journal of tribology, Vol. 132 N° 3 (Juillet 2010)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 3 (Juillet 2010) . - 11 p.
Titre : Comparison between elastic foundation and contact force models in wear analysis of planar multibody system Type de document : texte imprimé Auteurs : Saad Mukras, Auteur ; Kim, Nam H., Auteur ; Nathan A. Mauntler, Auteur Année de publication : 2011 Article en page(s) : 11 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Damping Elastic hysteresis Elasticity Finite element analysis Iterative methods Mechanical contact Wear Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : In this paper, two procedures to analyze planar multibody systems experiencing wear at a revolute joint are compared. In both procedures, the revolute joint of interest includes a clearance whose shape and size are dictated by wear. The procedures consist of coupled iterative analyses between a dynamic system analysis with nonideal joints and a wear prediction to determine the evolution of the joint clearance. In the first procedure, joint forces and contact pressures are estimated using the elastic foundation model with hysteresis damping via the dynamic analysis. In the second procedure, a contact force model with hysteresis damping is used to estimate the joint forces. In the latter case, however, the contact pressure is estimated using a finite element method (FEM). A comparison in performance of the two models is facilitated through the use of an experimental slider-crank mechanism in which wear is permitted to occur at one of the joints. It is observed that the two procedures provide similar estimates for the dynamic response and wear volumes but substantially different predictions on the wear profiles. Additionally, experimental results show that while predictions on the wear volume from both models are reasonably accurate, the FEM-based model produced more accurate predictions on the wear profile. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] Comparison between elastic foundation and contact force models in wear analysis of planar multibody system [texte imprimé] / Saad Mukras, Auteur ; Kim, Nam H., Auteur ; Nathan A. Mauntler, Auteur . - 2011 . - 11 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 3 (Juillet 2010) . - 11 p.
Mots-clés : Damping Elastic hysteresis Elasticity Finite element analysis Iterative methods Mechanical contact Wear Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : In this paper, two procedures to analyze planar multibody systems experiencing wear at a revolute joint are compared. In both procedures, the revolute joint of interest includes a clearance whose shape and size are dictated by wear. The procedures consist of coupled iterative analyses between a dynamic system analysis with nonideal joints and a wear prediction to determine the evolution of the joint clearance. In the first procedure, joint forces and contact pressures are estimated using the elastic foundation model with hysteresis damping via the dynamic analysis. In the second procedure, a contact force model with hysteresis damping is used to estimate the joint forces. In the latter case, however, the contact pressure is estimated using a finite element method (FEM). A comparison in performance of the two models is facilitated through the use of an experimental slider-crank mechanism in which wear is permitted to occur at one of the joints. It is observed that the two procedures provide similar estimates for the dynamic response and wear volumes but substantially different predictions on the wear profiles. Additionally, experimental results show that while predictions on the wear volume from both models are reasonably accurate, the FEM-based model produced more accurate predictions on the wear profile. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...]