Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Amir Younan
Documents disponibles écrits par cet auteur
Affiner la rechercheFeasibility of gas-expanded lubricants for increased energy efficiency in tilting-pad journal bearings / Andres Clarens in Transactions of the ASME . Journal of tribology, Vol. 132 N° 3 (Juillet 2010)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 3 (Juillet 2010) . - 08 p.
Titre : Feasibility of gas-expanded lubricants for increased energy efficiency in tilting-pad journal bearings Type de document : texte imprimé Auteurs : Andres Clarens, Auteur ; Amir Younan, Auteur ; Shibo Wang, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Tribology Langues : Anglais (eng) Mots-clés : Cooling Lubricants Machine bearings Shafts Viscosity Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Lubricants are necessary in tilting-pad journal bearings to ensure separation between solid surfaces and to dissipate heat. They are also responsible for much of the undesirable power losses that can occur through a bearing. Here, a novel method to reduce power losses in tilting-pad journal bearings is proposed in which the conventional lubricant is substituted by a binary mixture of synthetic lubricant and dissolved CO2. These gas-expanded lubricants (GELs) would be delivered to a reinforced bearing housing capable of withstanding modest pressures less than 10 MPa. For bearings subject to loads that are both variable and predictable, GELs could be used to adjust lubricant properties in real time. High-pressure lubricants, mostly gases, have already been explored in tilting-pad journal bearings as a means to accommodate higher shaft speeds while reducing power losses and eliminating the potential for thermal degradation of the lubricant. These gas-lubricated bearings have intrinsic limitations in terms of bearing size and load capacity. The proposed system would combine the loading capabilities of conventional lubricated bearings with the efficiency of gas-lubricated bearings. The liquid or supercritical CO2 serves as a low-viscosity and completely miscible additive to the lubricant that can be easily removed by purging the gas after releasing the pressure. In this way, the lubricant can be fully recycled, as in conventional systems, while controlling the lubricant properties dynamically by adding liquid or supercritical CO2. Lubricant properties of interest, such as viscosity, can be easily tuned by controlling the pressure inside the bearing housing. Experimental measurements of viscosity for mixtures of polyalkylene glycol (PAG)+CO2 at various compositions demonstrate that significant reductions in mixture viscosity can be achieved with relatively small additions of CO2. The measured parameters are used in a thermoelastohydrodynamic model of tilting-pad journal bearing performance to evaluate the bearing response to GELs. Model estimates of power loss, eccentricity ratio, and pad temperature suggest that bearings would respond quite favorably over a range of speed and preload conditions. Calculated power loss reductions of 20% are observed when compared with both a reference petroleum lubricant and PAG without CO2. Pad temperature is also maintained without significant increases in eccentricity ratio. Both power loss and pad temperature are directly correlated with PAG-CO2 composition, suggesting that these mixtures could be used as “smart” lubricants responsive to system operating conditions. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] [article] Feasibility of gas-expanded lubricants for increased energy efficiency in tilting-pad journal bearings [texte imprimé] / Andres Clarens, Auteur ; Amir Younan, Auteur ; Shibo Wang, Auteur . - 2011 . - 08 p.
Tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 132 N° 3 (Juillet 2010) . - 08 p.
Mots-clés : Cooling Lubricants Machine bearings Shafts Viscosity Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Lubricants are necessary in tilting-pad journal bearings to ensure separation between solid surfaces and to dissipate heat. They are also responsible for much of the undesirable power losses that can occur through a bearing. Here, a novel method to reduce power losses in tilting-pad journal bearings is proposed in which the conventional lubricant is substituted by a binary mixture of synthetic lubricant and dissolved CO2. These gas-expanded lubricants (GELs) would be delivered to a reinforced bearing housing capable of withstanding modest pressures less than 10 MPa. For bearings subject to loads that are both variable and predictable, GELs could be used to adjust lubricant properties in real time. High-pressure lubricants, mostly gases, have already been explored in tilting-pad journal bearings as a means to accommodate higher shaft speeds while reducing power losses and eliminating the potential for thermal degradation of the lubricant. These gas-lubricated bearings have intrinsic limitations in terms of bearing size and load capacity. The proposed system would combine the loading capabilities of conventional lubricated bearings with the efficiency of gas-lubricated bearings. The liquid or supercritical CO2 serves as a low-viscosity and completely miscible additive to the lubricant that can be easily removed by purging the gas after releasing the pressure. In this way, the lubricant can be fully recycled, as in conventional systems, while controlling the lubricant properties dynamically by adding liquid or supercritical CO2. Lubricant properties of interest, such as viscosity, can be easily tuned by controlling the pressure inside the bearing housing. Experimental measurements of viscosity for mixtures of polyalkylene glycol (PAG)+CO2 at various compositions demonstrate that significant reductions in mixture viscosity can be achieved with relatively small additions of CO2. The measured parameters are used in a thermoelastohydrodynamic model of tilting-pad journal bearing performance to evaluate the bearing response to GELs. Model estimates of power loss, eccentricity ratio, and pad temperature suggest that bearings would respond quite favorably over a range of speed and preload conditions. Calculated power loss reductions of 20% are observed when compared with both a reference petroleum lubricant and PAG without CO2. Pad temperature is also maintained without significant increases in eccentricity ratio. Both power loss and pad temperature are directly correlated with PAG-CO2 composition, suggesting that these mixtures could be used as “smart” lubricants responsive to system operating conditions. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013 [...] Temporal and convective inertia effects in plain journal bearings with eccentricity, velocity and acceleration / Saeid Dousti in Transactions of the ASME . Journal of tribology, Vol. 134 N° 3 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 3 (Juillet 2012) . - 08 p.
Titre : Temporal and convective inertia effects in plain journal bearings with eccentricity, velocity and acceleration Type de document : texte imprimé Auteurs : Saeid Dousti, Auteur ; Jianming Cao, Auteur ; Amir Younan, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : tribology Langues : Anglais (eng) Mots-clés : inertia effect; turbulence; Reynolds equation; journal bearing Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : This paper extends the theory originally developed by Tichy (Tichy and Bou-Said, 1991, Hydrodynamic Lubrication and Bearing Behavior With Impulsive Loads,” STLE Tribol. Trans. 34, pp. 505–512) for impulsive loads to high reduced Reynolds number lubrication. The incompressible continuity equation and Navier-Stokes equations, including inertia terms, are simplified using an averaged velocity approach to obtain an extended form of short bearing Reynolds equation which applies to both laminar and turbulent flows. A full kinematic analysis of the short journal bearing is developed. Pressure profiles and linearized stiffness, damping and mass coefficients are calculated for different operating conditions. A time transient solution is developed. The change in the rotor displacements when subjected to unbalance forces is explored. Several comparisons between conventional Reynolds equation solutions and the extended Reynolds number form with temporal inertia effects are presented and discussed. In the specific cases considered in this paper, the primary conclusion is that the turbulence effects are significantly more important than inertia effects. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000003 [...] [article] Temporal and convective inertia effects in plain journal bearings with eccentricity, velocity and acceleration [texte imprimé] / Saeid Dousti, Auteur ; Jianming Cao, Auteur ; Amir Younan, Auteur . - 2012 . - 08 p.
tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 3 (Juillet 2012) . - 08 p.
Mots-clés : inertia effect; turbulence; Reynolds equation; journal bearing Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : This paper extends the theory originally developed by Tichy (Tichy and Bou-Said, 1991, Hydrodynamic Lubrication and Bearing Behavior With Impulsive Loads,” STLE Tribol. Trans. 34, pp. 505–512) for impulsive loads to high reduced Reynolds number lubrication. The incompressible continuity equation and Navier-Stokes equations, including inertia terms, are simplified using an averaged velocity approach to obtain an extended form of short bearing Reynolds equation which applies to both laminar and turbulent flows. A full kinematic analysis of the short journal bearing is developed. Pressure profiles and linearized stiffness, damping and mass coefficients are calculated for different operating conditions. A time transient solution is developed. The change in the rotor displacements when subjected to unbalance forces is explored. Several comparisons between conventional Reynolds equation solutions and the extended Reynolds number form with temporal inertia effects are presented and discussed. In the specific cases considered in this paper, the primary conclusion is that the turbulence effects are significantly more important than inertia effects. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000003 [...]