Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Bassem Kheireddin
Documents disponibles écrits par cet auteur
Affiner la rechercheFriction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars / Childs, Dara W. in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 10 p.
Titre : Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars Type de document : texte imprimé Auteurs : Childs, Dara W., Auteur ; Bassem Kheireddin, Auteur ; Stephen Phillips, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Compressors Flow Friction Plates (structures) Rotors Stators Surface roughness Test facilities Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A flat-plate tester was used to measure the friction factor behavior for a hole-pattern roughened surface apposed to a smooth surface. The tests were executed to characterize the friction factor behavior of annular seals that use a roughened-surface stator and a smooth rotor. Friction factors were obtained from measurements of the mass flow rate and static pressure measurements along the smooth and roughened surfaces. In addition, dynamic pressure measurements were made at four axial locations at the bottom of individual holes and at facing locations in the smooth plate. The test facility is described, and a procedure for determining the friction factor is reviewed. Three clearances were investigated: 0.635 mm, 0.381 mm, and 0.254 mm. Tests were conducted with air at three different inlet pressures (84 bars, 70 bars, and 55 bars), producing a Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested, including smooth-on-smooth, smooth-on-hole, and hole-on-hole. The hole-pattern plates are identical with the exception of the hole depth. For the smooth-on-smooth and smooth-on-hole configurations, the friction factor remains largely constant or increases slightly with increasing Reynolds numbers. The friction factor increases as the clearance between the plates increases. The test program was initiated to investigate a friction-factor jump phenomenon cited by Ha et al. (1992, “Friction-Factor Characteristics for Narrow-Channels With Honeycomb Surfaces,” Trans. ASME, J. Tribol., 114, pp. 714–721) in test results from a flat-plate tester where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. They tested apposed honeycomb surfaces. For the present tests, the phenomenon was also observed for tests of apposed roughened surfaces but was not observed for smooth-on-smooth or smooth-on-rough configurations. When the phenomenon was observed, dynamic pressure measurements showed a peak-pressure oscillation at the calculated Helmholtz frequency of the holes. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Friction factor behavior from flat-plate tests of smooth and hole-pattern roughened surfaces with supply pressures up to 84 bars [texte imprimé] / Childs, Dara W., Auteur ; Bassem Kheireddin, Auteur ; Stephen Phillips, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 10 p.
Mots-clés : Compressors Flow Friction Plates (structures) Rotors Stators Surface roughness Test facilities Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A flat-plate tester was used to measure the friction factor behavior for a hole-pattern roughened surface apposed to a smooth surface. The tests were executed to characterize the friction factor behavior of annular seals that use a roughened-surface stator and a smooth rotor. Friction factors were obtained from measurements of the mass flow rate and static pressure measurements along the smooth and roughened surfaces. In addition, dynamic pressure measurements were made at four axial locations at the bottom of individual holes and at facing locations in the smooth plate. The test facility is described, and a procedure for determining the friction factor is reviewed. Three clearances were investigated: 0.635 mm, 0.381 mm, and 0.254 mm. Tests were conducted with air at three different inlet pressures (84 bars, 70 bars, and 55 bars), producing a Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested, including smooth-on-smooth, smooth-on-hole, and hole-on-hole. The hole-pattern plates are identical with the exception of the hole depth. For the smooth-on-smooth and smooth-on-hole configurations, the friction factor remains largely constant or increases slightly with increasing Reynolds numbers. The friction factor increases as the clearance between the plates increases. The test program was initiated to investigate a friction-factor jump phenomenon cited by Ha et al. (1992, “Friction-Factor Characteristics for Narrow-Channels With Honeycomb Surfaces,” Trans. ASME, J. Tribol., 114, pp. 714–721) in test results from a flat-plate tester where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. They tested apposed honeycomb surfaces. For the present tests, the phenomenon was also observed for tests of apposed roughened surfaces but was not observed for smooth-on-smooth or smooth-on-rough configurations. When the phenomenon was observed, dynamic pressure measurements showed a peak-pressure oscillation at the calculated Helmholtz frequency of the holes. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]