Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Li-Min Xu
Documents disponibles écrits par cet auteur
Affiner la recherchePreparation of drug nanoparticles using a T - junction microchannel system / Qian-Xia Zhang in Industrial & engineering chemistry research, Vol. 50 N° 24 (Décembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 24 (Décembre 2011) . - pp. 13805–13812
Titre : Preparation of drug nanoparticles using a T - junction microchannel system Type de document : texte imprimé Auteurs : Qian-Xia Zhang, Auteur ; Li-Min Xu, Auteur ; Yue Zhou, Auteur Année de publication : 2012 Article en page(s) : pp. 13805–13812 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Nanoparticles Résumé : Cefuroxime axetil (CFA) drug nanoparticles were prepared by liquid antisolvent precipitation in a microchannel system with a T-shaped junction formed by a main microchannel and a branch. Isopropyl ether as the antisolvent (high flow rate) was usually passed through the main microchannel, and CFA acetone solution as the solvent (low flow rate) was injected into the branch simultaneously. The solvent diffused from the CFA acetone solution stream into the antisolvent phase, which resulted in the supersaturation of CFA and thus led to the rapid precipitation of CFA nanoparticles. The change of the injection phase from CFA acetone solution to isopropyl ether was found to have a significant effect on the formation of CFA nanoparticles owing to the different contact behavior. The morphology and size of CFA nanoparticles were characterized by scanning electronic microscopy (SEM) and particle size distribution (PSD) measurements by laser diffractometry. Furthermore, the effects of CFA acetone solution velocity, antisolvent velocity, overall velocity, and CFA concentration on the particle size and size distribution were experimentally investigated. The as-prepared CFA nanoparticles were amorphous and exhibited a higher dissolution rate than raw CFA. This work suggests that microfluidics might find wide applications in the development and optimization of drug nanoparticles in the newly emerging field of nanomedicine. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie201291r [article] Preparation of drug nanoparticles using a T - junction microchannel system [texte imprimé] / Qian-Xia Zhang, Auteur ; Li-Min Xu, Auteur ; Yue Zhou, Auteur . - 2012 . - pp. 13805–13812.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 24 (Décembre 2011) . - pp. 13805–13812
Mots-clés : Nanoparticles Résumé : Cefuroxime axetil (CFA) drug nanoparticles were prepared by liquid antisolvent precipitation in a microchannel system with a T-shaped junction formed by a main microchannel and a branch. Isopropyl ether as the antisolvent (high flow rate) was usually passed through the main microchannel, and CFA acetone solution as the solvent (low flow rate) was injected into the branch simultaneously. The solvent diffused from the CFA acetone solution stream into the antisolvent phase, which resulted in the supersaturation of CFA and thus led to the rapid precipitation of CFA nanoparticles. The change of the injection phase from CFA acetone solution to isopropyl ether was found to have a significant effect on the formation of CFA nanoparticles owing to the different contact behavior. The morphology and size of CFA nanoparticles were characterized by scanning electronic microscopy (SEM) and particle size distribution (PSD) measurements by laser diffractometry. Furthermore, the effects of CFA acetone solution velocity, antisolvent velocity, overall velocity, and CFA concentration on the particle size and size distribution were experimentally investigated. The as-prepared CFA nanoparticles were amorphous and exhibited a higher dissolution rate than raw CFA. This work suggests that microfluidics might find wide applications in the development and optimization of drug nanoparticles in the newly emerging field of nanomedicine. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie201291r