Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jinbing Zhang
Documents disponibles écrits par cet auteur
Affiner la rechercheMorphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly (E - caprolactone) / thermally reduced graphene nanocomposites / Jinbing Zhang in Industrial & engineering chemistry research, Vol. 50 N° 24 (Décembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 24 (Décembre 2011) . - pp. 13885–13891
Titre : Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly (E - caprolactone) / thermally reduced graphene nanocomposites Type de document : texte imprimé Auteurs : Jinbing Zhang, Auteur ; Zhaobin Qiu, Auteur Année de publication : 2012 Article en page(s) : pp. 13885–13891 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Morphology Biodegradable Nanocomposites Résumé : Biodegradable poly(E-caprolactone) (PCL)/thermally reduced graphene (TRG) nanocomposites were prepared via a solution mixing method at low TRG loadings in this work. Transmission electron microscopy and high resolution transmission electron microscopy observations reveal that a fine dispersion of TRG has been achieved throughout the PCL matrix. Scanning electron microscopy observation shows not only a nice dispersion of TRG but also a strong interfacial adhesion between TRG and the matrix, as evidenced by the presence of some TRG nanosheets embedded in the matrix. Nonisothermal melt crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology, and crystal structure of neat PCL and the PCL/TRG nanocomposites were studied in detail with various techniques. The experimental results indicate that both nonisothermal and isothermal melt crystallization of PCL have been enhanced significantly by the presence of TRG in the nanocomposites due to the heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PCL do not change. Dynamic mechanical analysis study shows that the storage modulus of the nanocomposites has been greatly improved by about 203% and 292%, respectively, with incorporating only 0.5 and 2.0 wt % TRG at −80 °C as compared with neat PCL. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202132m [article] Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly (E - caprolactone) / thermally reduced graphene nanocomposites [texte imprimé] / Jinbing Zhang, Auteur ; Zhaobin Qiu, Auteur . - 2012 . - pp. 13885–13891.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 24 (Décembre 2011) . - pp. 13885–13891
Mots-clés : Morphology Biodegradable Nanocomposites Résumé : Biodegradable poly(E-caprolactone) (PCL)/thermally reduced graphene (TRG) nanocomposites were prepared via a solution mixing method at low TRG loadings in this work. Transmission electron microscopy and high resolution transmission electron microscopy observations reveal that a fine dispersion of TRG has been achieved throughout the PCL matrix. Scanning electron microscopy observation shows not only a nice dispersion of TRG but also a strong interfacial adhesion between TRG and the matrix, as evidenced by the presence of some TRG nanosheets embedded in the matrix. Nonisothermal melt crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology, and crystal structure of neat PCL and the PCL/TRG nanocomposites were studied in detail with various techniques. The experimental results indicate that both nonisothermal and isothermal melt crystallization of PCL have been enhanced significantly by the presence of TRG in the nanocomposites due to the heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PCL do not change. Dynamic mechanical analysis study shows that the storage modulus of the nanocomposites has been greatly improved by about 203% and 292%, respectively, with incorporating only 0.5 and 2.0 wt % TRG at −80 °C as compared with neat PCL. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202132m