Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Furong Gao
Documents disponibles écrits par cet auteur
Affiner la rechercheStatistical monitoring and fault diagnosis of batch processes using two - dimensional dynamic information / Yuan Yao in Industrial & engineering chemistry research, Vol. 49 N° 20 (Octobre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 20 (Octobre 2010) . - pp. 9961–9969
Titre : Statistical monitoring and fault diagnosis of batch processes using two - dimensional dynamic information Type de document : texte imprimé Auteurs : Yuan Yao, Auteur ; Furong Gao, Auteur Année de publication : 2011 Article en page(s) : pp. 9961–9969 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Dynamic Résumé : Two-dimensional (2D) dynamics widely exist in batch processes, which inspirit research efforts to develop corresponding monitoring schemes. Recently, two-dimensional dynamic principal component analysis (2D-DPCA) has been proposed to model and monitor such 2D dynamic batch processes, in which support region (ROS) determination is a key step. A proper ROS ensures modeling accuracy, monitoring efficiency, and reasonable fault diagnosis. The previous ROS determination method is practicable in many situations but still has certain limitations, as discussed in this paper. To overcome these shortcomings, a 2D-DPCA method with an improved ROS determination procedure is developed, by considering variable partial correlations and performing iterative stepwise regressions. Such a procedure expands ROS batch by batch and is a generalization of the autoregressive (AR) model order selection to the 2D batch process cases. Simulations show that the proposed method extracts 2D dynamics more accurately and improves the monitoring and diagnosis performance of the 2D-DPCA model. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100860x [article] Statistical monitoring and fault diagnosis of batch processes using two - dimensional dynamic information [texte imprimé] / Yuan Yao, Auteur ; Furong Gao, Auteur . - 2011 . - pp. 9961–9969.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 20 (Octobre 2010) . - pp. 9961–9969
Mots-clés : Dynamic Résumé : Two-dimensional (2D) dynamics widely exist in batch processes, which inspirit research efforts to develop corresponding monitoring schemes. Recently, two-dimensional dynamic principal component analysis (2D-DPCA) has been proposed to model and monitor such 2D dynamic batch processes, in which support region (ROS) determination is a key step. A proper ROS ensures modeling accuracy, monitoring efficiency, and reasonable fault diagnosis. The previous ROS determination method is practicable in many situations but still has certain limitations, as discussed in this paper. To overcome these shortcomings, a 2D-DPCA method with an improved ROS determination procedure is developed, by considering variable partial correlations and performing iterative stepwise regressions. Such a procedure expands ROS batch by batch and is a generalization of the autoregressive (AR) model order selection to the 2D batch process cases. Simulations show that the proposed method extracts 2D dynamics more accurately and improves the monitoring and diagnosis performance of the 2D-DPCA model. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100860x