Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur H. Asadollahi Poorali
Documents disponibles écrits par cet auteur
Affiner la recherchePrediction of coal response to froth flotation based on coal analysis using regression and artificial neural network / E. Jorjani in Minerals engineering, Vol. 22 N° 11 (Octobre 2009)
[article]
in Minerals engineering > Vol. 22 N° 11 (Octobre 2009) . - pp. 970–976
Titre : Prediction of coal response to froth flotation based on coal analysis using regression and artificial neural network Type de document : texte imprimé Auteurs : E. Jorjani, Auteur ; H. Asadollahi Poorali, Auteur ; A. Sam, Auteur Année de publication : 2009 Article en page(s) : pp. 970–976 Note générale : Génie Minier Langues : Anglais (eng) Mots-clés : Coal Neural networks Froth flotation Modeling Résumé : In this paper, the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate were predicted by regression and artificial neural network based on proximate and group macerals analysis. The regression method shows that the relationships between (a) ln (ash), volatile matter and moisture (b) ln (ash), ln (liptinite), fusinite and vitrinite with combustible value can achieve the correlation coefficients (R2) of 0.8 and 0.79, respectively. In addition, the input sets of (c) ash, volatile matter and moisture (d) ash, liptinite and fusinite can predict the combustible recovery with the correlation coefficients of 0.84 and 0.63, respectively. Feed-forward artificial neural network with 6-8-12-11-2-1 arrangement for moisture, ash and volatile matter input set was capable to estimate both combustible value and combustible recovery with correlation of 0.95. It was shown that the proposed neural network model could accurately reproduce all the effects of proximate and group macerals analysis on coal flotation system. DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science/article/pii/S0892687509000776 [article] Prediction of coal response to froth flotation based on coal analysis using regression and artificial neural network [texte imprimé] / E. Jorjani, Auteur ; H. Asadollahi Poorali, Auteur ; A. Sam, Auteur . - 2009 . - pp. 970–976.
Génie Minier
Langues : Anglais (eng)
in Minerals engineering > Vol. 22 N° 11 (Octobre 2009) . - pp. 970–976
Mots-clés : Coal Neural networks Froth flotation Modeling Résumé : In this paper, the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate were predicted by regression and artificial neural network based on proximate and group macerals analysis. The regression method shows that the relationships between (a) ln (ash), volatile matter and moisture (b) ln (ash), ln (liptinite), fusinite and vitrinite with combustible value can achieve the correlation coefficients (R2) of 0.8 and 0.79, respectively. In addition, the input sets of (c) ash, volatile matter and moisture (d) ash, liptinite and fusinite can predict the combustible recovery with the correlation coefficients of 0.84 and 0.63, respectively. Feed-forward artificial neural network with 6-8-12-11-2-1 arrangement for moisture, ash and volatile matter input set was capable to estimate both combustible value and combustible recovery with correlation of 0.95. It was shown that the proposed neural network model could accurately reproduce all the effects of proximate and group macerals analysis on coal flotation system. DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science/article/pii/S0892687509000776