Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Torres
Documents disponibles écrits par cet auteur
Affiner la rechercheA novel approach for the modelling of high-pressure grinding rolls / M. Torres in Minerals engineering, Vol. 22 N° 13 (Octobre 2009)
[article]
in Minerals engineering > Vol. 22 N° 13 (Octobre 2009) . - pp. 1137–1146
Titre : A novel approach for the modelling of high-pressure grinding rolls Type de document : texte imprimé Auteurs : M. Torres, Auteur ; A. Casali, Auteur Année de publication : 2009 Article en page(s) : pp. 1137–1146 Note générale : Génie Minier Langues : Anglais (eng) Mots-clés : Modelling Grinding Sulphide ores Résumé : The HPGR technology has become more attractive to the copper industry because of its high throughput capacities and its low specific energy consumptions. A HPGR model, able to give enough information based on pilot plant testing, in order to back up HPGR engineering studies, was developed. The model was based on the physical phenomena of the grinding operation. The model parameters were fitted with pilot scale test results, corresponding to a Chilean copper ore, classified in two lithologies (andesitic and porphyrytic ores). Some sets of data were not used in the fitting stage, to test the predictive capability of the model. The pilot scale tests were performed at the facilities of two HPGR manufacturers, changing operating pressure and rolls peripheral velocity (only one of the manufacturers). The simulated specific energy consumptions and particle size distributions, compared with the experimental data, were considered good enough. The model was able to predict adequately throughput capacity, specific energy consumption and particle size distributions of the edge, centre and total products. DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science/article/pii/S0892687509001198 [article] A novel approach for the modelling of high-pressure grinding rolls [texte imprimé] / M. Torres, Auteur ; A. Casali, Auteur . - 2009 . - pp. 1137–1146.
Génie Minier
Langues : Anglais (eng)
in Minerals engineering > Vol. 22 N° 13 (Octobre 2009) . - pp. 1137–1146
Mots-clés : Modelling Grinding Sulphide ores Résumé : The HPGR technology has become more attractive to the copper industry because of its high throughput capacities and its low specific energy consumptions. A HPGR model, able to give enough information based on pilot plant testing, in order to back up HPGR engineering studies, was developed. The model was based on the physical phenomena of the grinding operation. The model parameters were fitted with pilot scale test results, corresponding to a Chilean copper ore, classified in two lithologies (andesitic and porphyrytic ores). Some sets of data were not used in the fitting stage, to test the predictive capability of the model. The pilot scale tests were performed at the facilities of two HPGR manufacturers, changing operating pressure and rolls peripheral velocity (only one of the manufacturers). The simulated specific energy consumptions and particle size distributions, compared with the experimental data, were considered good enough. The model was able to predict adequately throughput capacity, specific energy consumption and particle size distributions of the edge, centre and total products. DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science/article/pii/S0892687509001198 Online monitoring system for stand-alone photovoltaic applications / M. Torres in Transactions of the ASME. Journal of solar energy engineering, Vol. 134 N° 3 (Août 2012)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 3 (Août 2012) . - 08 p.
Titre : Online monitoring system for stand-alone photovoltaic applications : analysis of system performance from monitored data Type de document : texte imprimé Auteurs : M. Torres, Auteur ; F. J. Muñoz, Auteur ; J. V. Munoz, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : solar energy Langues : Anglais (eng) Mots-clés : SAPV systems; performance analysis; monitoring; LABVIEW; internet Index. décimale : 621.47 Résumé : The Guidelines for the Assessment of Photovoltaic Plants provided by the Joint Research Centre (JRC) and the International Standard IEC 61724 recommend procedures for the analysis of monitored data to asses the overall performance of photovoltaic (PV) systems. However, the latter do not provide a well adapted method for the analysis of stand-alone photovoltaic systems (SAPV) with charge regulators without maximum power point tracker (MPPT). In this way, the IDEA Research Group has developed a new method that improves the analysis performance of these kinds of systems. Moreover, it has been validated an expression that compromises simplicity and accuracy when estimating the array potential in this kind of systems. SAPV system monitoring and performance analysis from monitored data are of great interest to engineers both for detecting a system malfunction and for optimizing the design of future SAPV system. In this way, this paper introduces an online monitoring system in real time for SAPV applications where the monitored data are processed in order to provide an analysis of system performance. The latter, together with the monitored data, are displayed on a graphical user interface using a virtual instrument (VI) developed in LABVIEW®. Furthermore, the collected and monitored data can be shown in a website where an external user can see the daily evolution of all monitored and derived parameters. At present, three different SAPV systems, installed in the Polytechnic School of University of Jaén, are being monitorized and the collected data are being published online in real time. Moreover, a performance analysis of these stand-alone photovoltaic systems considering both IEC 61724 and the IDEA Method is also offered. These three systems use the charge regulators more widespread in the market. Systems #1 and #2 use pulse width modulation (PWM) charge regulators, (a series and a shunt regulator, respectively), meanwhile System #3 has a charge regulator with MPPT. This website provides a tool that can be used not only for educational purposes in order to illustrate the operation of this kind of systems but it can also show the scientific and engineering community the main features of the system performance analysis methods mentioned above. Furthermore, it allows an external user to download the monitored and analysis data to make its own offline analysis. These files comply with the format proposed in the standard IEC 61724. The SAPV system monitoring website is now available for public viewing on the University of Jaén. (http://voltio.ujaen.es/sfa/index.html). DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000003 [...] [article] Online monitoring system for stand-alone photovoltaic applications : analysis of system performance from monitored data [texte imprimé] / M. Torres, Auteur ; F. J. Muñoz, Auteur ; J. V. Munoz, Auteur . - 2012 . - 08 p.
solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 3 (Août 2012) . - 08 p.
Mots-clés : SAPV systems; performance analysis; monitoring; LABVIEW; internet Index. décimale : 621.47 Résumé : The Guidelines for the Assessment of Photovoltaic Plants provided by the Joint Research Centre (JRC) and the International Standard IEC 61724 recommend procedures for the analysis of monitored data to asses the overall performance of photovoltaic (PV) systems. However, the latter do not provide a well adapted method for the analysis of stand-alone photovoltaic systems (SAPV) with charge regulators without maximum power point tracker (MPPT). In this way, the IDEA Research Group has developed a new method that improves the analysis performance of these kinds of systems. Moreover, it has been validated an expression that compromises simplicity and accuracy when estimating the array potential in this kind of systems. SAPV system monitoring and performance analysis from monitored data are of great interest to engineers both for detecting a system malfunction and for optimizing the design of future SAPV system. In this way, this paper introduces an online monitoring system in real time for SAPV applications where the monitored data are processed in order to provide an analysis of system performance. The latter, together with the monitored data, are displayed on a graphical user interface using a virtual instrument (VI) developed in LABVIEW®. Furthermore, the collected and monitored data can be shown in a website where an external user can see the daily evolution of all monitored and derived parameters. At present, three different SAPV systems, installed in the Polytechnic School of University of Jaén, are being monitorized and the collected data are being published online in real time. Moreover, a performance analysis of these stand-alone photovoltaic systems considering both IEC 61724 and the IDEA Method is also offered. These three systems use the charge regulators more widespread in the market. Systems #1 and #2 use pulse width modulation (PWM) charge regulators, (a series and a shunt regulator, respectively), meanwhile System #3 has a charge regulator with MPPT. This website provides a tool that can be used not only for educational purposes in order to illustrate the operation of this kind of systems but it can also show the scientific and engineering community the main features of the system performance analysis methods mentioned above. Furthermore, it allows an external user to download the monitored and analysis data to make its own offline analysis. These files comply with the format proposed in the standard IEC 61724. The SAPV system monitoring website is now available for public viewing on the University of Jaén. (http://voltio.ujaen.es/sfa/index.html). DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000003 [...]