Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Piervincenzo Rizzo
Documents disponibles écrits par cet auteur
Affiner la rechercheElastoplastic damaging model for adhesive anchor systems. I / Antonino Spada in Journal of engineering mechanics, Vol. 137 N° 12 (Decembre 2011)
[article]
in Journal of engineering mechanics > Vol. 137 N° 12 (Decembre 2011) . - pp.854-861
Titre : Elastoplastic damaging model for adhesive anchor systems. I : Theoretical formulation and numerical implementation Type de document : texte imprimé Auteurs : Antonino Spada, Auteur ; Giuseppe Giambanco, Auteur ; Piervincenzo Rizzo, Auteur Année de publication : 2012 Article en page(s) : pp.854-861 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Elastoplasticity Damage Pullout Interfaces Finite element method Anchors Implementation Résumé : In this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, brittle, or quasi-brittle materials. The Helmholtz free energy is written to model the materials’ hardening or softening. Isotropic damage is considered, and the possible effects of dilatancy are taken into account, including nonassociative flow rules. The formulation is implemented into the finite-element code FEAP. In the companion paper, the new model is adopted to predict the mechanical response to the pullout force of postinstalled rebar chemically bonded in concrete. The analytical model and the numerical implementation are experimentally validated by several pullout tests, which are monitored by using an acoustic-emission technique. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v137/i12/p854_s1?isAuthorized=no [article] Elastoplastic damaging model for adhesive anchor systems. I : Theoretical formulation and numerical implementation [texte imprimé] / Antonino Spada, Auteur ; Giuseppe Giambanco, Auteur ; Piervincenzo Rizzo, Auteur . - 2012 . - pp.854-861.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 137 N° 12 (Decembre 2011) . - pp.854-861
Mots-clés : Elastoplasticity Damage Pullout Interfaces Finite element method Anchors Implementation Résumé : In this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, brittle, or quasi-brittle materials. The Helmholtz free energy is written to model the materials’ hardening or softening. Isotropic damage is considered, and the possible effects of dilatancy are taken into account, including nonassociative flow rules. The formulation is implemented into the finite-element code FEAP. In the companion paper, the new model is adopted to predict the mechanical response to the pullout force of postinstalled rebar chemically bonded in concrete. The analytical model and the numerical implementation are experimentally validated by several pullout tests, which are monitored by using an acoustic-emission technique. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v137/i12/p854_s1?isAuthorized=no