[article]
Titre : |
Fluid dynamics based modelling of the Falcon concentrator for ultrafine particle beneficiation |
Type de document : |
texte imprimé |
Auteurs : |
Jean-Sébastien Kroll-Rabotin, Auteur ; Florent Bourgeois, Auteur ; Éric Climent, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
pp. 313–320 |
Note générale : |
Génie Minier |
Langues : |
Anglais (eng) |
Mots-clés : |
Gravity concentration Computational fluid dynamics Modelling Particle size |
Résumé : |
Enhanced gravity separators are widely used in mineral beneficiation, as their superior gravity field enables them to separate particles within narrow classes of density and size. This study aims to shed light on the Falcon concentrator’s ability to separate particles within size and density ranges lower than usual, say 5–60 μm and 1.2–3.0 s.g. respectively. As differential particle settling is expected to be the prevailing separation mechanism under such conditions, this study presents the workings of a predictive Falcon separation model that embeds phenomenological fluid and particle flow simulation inside the Falcon’s flowing film. Adding to the novelty of modelling the Falcon concentrator using a fluid mechanics approach, one point of practical significance within this work is the derivation of the Falcon’s partition function from fluid flow simulation results. |
DEWEY : |
622 |
ISSN : |
0892-6875 |
En ligne : |
http://www.sciencedirect.com/science/article/pii/S0892687509002556 |
in Minerals engineering > Vol. 23 N° 4 (Mars 2010) . - pp. 313–320
[article] Fluid dynamics based modelling of the Falcon concentrator for ultrafine particle beneficiation [texte imprimé] / Jean-Sébastien Kroll-Rabotin, Auteur ; Florent Bourgeois, Auteur ; Éric Climent, Auteur . - 2011 . - pp. 313–320. Génie Minier Langues : Anglais ( eng) in Minerals engineering > Vol. 23 N° 4 (Mars 2010) . - pp. 313–320
Mots-clés : |
Gravity concentration Computational fluid dynamics Modelling Particle size |
Résumé : |
Enhanced gravity separators are widely used in mineral beneficiation, as their superior gravity field enables them to separate particles within narrow classes of density and size. This study aims to shed light on the Falcon concentrator’s ability to separate particles within size and density ranges lower than usual, say 5–60 μm and 1.2–3.0 s.g. respectively. As differential particle settling is expected to be the prevailing separation mechanism under such conditions, this study presents the workings of a predictive Falcon separation model that embeds phenomenological fluid and particle flow simulation inside the Falcon’s flowing film. Adding to the novelty of modelling the Falcon concentrator using a fluid mechanics approach, one point of practical significance within this work is the derivation of the Falcon’s partition function from fluid flow simulation results. |
DEWEY : |
622 |
ISSN : |
0892-6875 |
En ligne : |
http://www.sciencedirect.com/science/article/pii/S0892687509002556 |
|