Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Robert P. Van Hille
Documents disponibles écrits par cet auteur
Affiner la rechercheInvestigating heap bioleaching / Robert P. Van Hille in Minerals engineering, Vol. 23 N° 6 (Mai 2010)
[article]
in Minerals engineering > Vol. 23 N° 6 (Mai 2010) . - pp. 518–525
Titre : Investigating heap bioleaching : Effect of feed iron concentration on bioleaching performance Type de document : texte imprimé Auteurs : Robert P. Van Hille, Auteur ; Andries W. van Zyl, Auteur ; Nicholas R.L. Spurr, Auteur Année de publication : 2011 Article en page(s) : pp. 518–525 Note générale : Génie Minier Langues : Anglais (eng) Mots-clés : Sulphide ores Hydrometallurgy Bioleaching Reaction kinetics Résumé : This paper describes an investigation into the effect of iron concentration in the leach solution on the bioleaching of a low grade copper ore, where chalcopyrite was the dominant copper sulphide. The concentration of dissolved iron is primarily controlled by pH and the relative proportion of ferric to ferrous iron, with significant jarosite precipitation occurring above pH ≈ 1.8 in a highly oxidised system. The solution pH may be increased by the dissolution of acid soluble gangue and when iron oxidation is significantly higher than sulphur oxidation. The study was approached using two experimental systems. In the former, the leach solution was recycled through an ore bed of low aspect (reactor height divided by diameter) ratio for a portion of the experiment. During the recycle phase, no acid was added to the system and acid consumption by gangue material led to a pH increase (1.6–2.2). The resulting jarosite precipitation reduced soluble iron from 2.5 g/l to less than 250 mg/l. Copper recovery decreased, but not in proportion to the decrease in iron. This was partly attributed to adsorption on, or entrainment within, the jarosites. To study the effect of reduced iron concentration on leach performance under more controlled conditions, bioleaching was performed in packed bed column reactors with feed iron concentrations ranging from 5 g/l to 200 mg/l. Observations indicated an initial decreased rate of copper liberation with reduced iron concentration in the feed. The relationship between available Fe3+ concentration and copper liberation was not proportional. However, with time, the liberation of copper became independent of iron concentration in the percolation liquor. Further, the specific rate of copper liberation was consistently below the theoretical value on a basis of ferric iron concentration. The highest values of copper liberation were reported at the lowest iron concentrations. In summary, while increased iron concentration in solution may enhance the initial rate of leaching, mineral availability appears to dominate CuFeS2 leach kinetics through the majority of the leach. Furthermore, high iron concentrations in solution aggravate jarosite formation with concomitant retention of copper in the ore bed. DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science/article/pii/S0892687510000233 [article] Investigating heap bioleaching : Effect of feed iron concentration on bioleaching performance [texte imprimé] / Robert P. Van Hille, Auteur ; Andries W. van Zyl, Auteur ; Nicholas R.L. Spurr, Auteur . - 2011 . - pp. 518–525.
Génie Minier
Langues : Anglais (eng)
in Minerals engineering > Vol. 23 N° 6 (Mai 2010) . - pp. 518–525
Mots-clés : Sulphide ores Hydrometallurgy Bioleaching Reaction kinetics Résumé : This paper describes an investigation into the effect of iron concentration in the leach solution on the bioleaching of a low grade copper ore, where chalcopyrite was the dominant copper sulphide. The concentration of dissolved iron is primarily controlled by pH and the relative proportion of ferric to ferrous iron, with significant jarosite precipitation occurring above pH ≈ 1.8 in a highly oxidised system. The solution pH may be increased by the dissolution of acid soluble gangue and when iron oxidation is significantly higher than sulphur oxidation. The study was approached using two experimental systems. In the former, the leach solution was recycled through an ore bed of low aspect (reactor height divided by diameter) ratio for a portion of the experiment. During the recycle phase, no acid was added to the system and acid consumption by gangue material led to a pH increase (1.6–2.2). The resulting jarosite precipitation reduced soluble iron from 2.5 g/l to less than 250 mg/l. Copper recovery decreased, but not in proportion to the decrease in iron. This was partly attributed to adsorption on, or entrainment within, the jarosites. To study the effect of reduced iron concentration on leach performance under more controlled conditions, bioleaching was performed in packed bed column reactors with feed iron concentrations ranging from 5 g/l to 200 mg/l. Observations indicated an initial decreased rate of copper liberation with reduced iron concentration in the feed. The relationship between available Fe3+ concentration and copper liberation was not proportional. However, with time, the liberation of copper became independent of iron concentration in the percolation liquor. Further, the specific rate of copper liberation was consistently below the theoretical value on a basis of ferric iron concentration. The highest values of copper liberation were reported at the lowest iron concentrations. In summary, while increased iron concentration in solution may enhance the initial rate of leaching, mineral availability appears to dominate CuFeS2 leach kinetics through the majority of the leach. Furthermore, high iron concentrations in solution aggravate jarosite formation with concomitant retention of copper in the ore bed. DEWEY : 622 ISSN : 0892-6875 En ligne : http://www.sciencedirect.com/science/article/pii/S0892687510000233