Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Hsiao-Ming Tung
Documents disponibles écrits par cet auteur
Affiner la rechercheHigh temperature aging and corrosion study on alloy 617 and alloy 230 / Kun Mo in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 5 (Mai 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 5 (Mai 2011) . - 09 p.
Titre : High temperature aging and corrosion study on alloy 617 and alloy 230 Type de document : texte imprimé Auteurs : Kun Mo, Auteur ; Gianfranco Lovicu, Auteur ; Hsiao-Ming Tung, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Ageing Alloys Corrosion Crystal microstructure Fission reactor materials Hardness Scanning electron microscopy Tensile strength Transmission electron microscopy X-ray spectroscopy Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The very high temperature gas-cooled reactor (VHTR), with dual capacities of highly efficient electricity generation and thermochemical production of hydrogen, is considered as one of the most promising Gen-IV nuclear systems. The primary candidate materials for construction of the intermediate heat exchanger (IHX) for the VHTR are alloy 617 and alloy 230. To have a better understanding of the degradation process during high temperature long-term service and to provide practical data for the engineering design of the IHX, aging experiments were performed on alloy 617 and alloy 230 at 900°C and 1000°C. Mechanical properties (hardness and tensile strength) and microstructure were analyzed on post-aging samples after different aging periods (up to 3000 h). Both alloys attained increased hardness during the early stages of aging and dramatically soften after extended aging times. Microstructural analysis including transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and electron backscatter diffraction was carried out to investigate the microstructure evolution during aging. A carbide particle precipitation, growth, and maturing process was observed for both alloys, which corresponds to the changes of the materials' mechanical properties. Few changes in grain boundary character distribution and grain size distribution were observed after aging. In addition, high temperature corrosion studies were performed at 900°C and 1000°C for both alloys. Alloy 230 exhibits much better corrosion resistance at elevated temperature compared with alloy 617. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] High temperature aging and corrosion study on alloy 617 and alloy 230 [texte imprimé] / Kun Mo, Auteur ; Gianfranco Lovicu, Auteur ; Hsiao-Ming Tung, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 5 (Mai 2011) . - 09 p.
Mots-clés : Ageing Alloys Corrosion Crystal microstructure Fission reactor materials Hardness Scanning electron microscopy Tensile strength Transmission electron microscopy X-ray spectroscopy Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The very high temperature gas-cooled reactor (VHTR), with dual capacities of highly efficient electricity generation and thermochemical production of hydrogen, is considered as one of the most promising Gen-IV nuclear systems. The primary candidate materials for construction of the intermediate heat exchanger (IHX) for the VHTR are alloy 617 and alloy 230. To have a better understanding of the degradation process during high temperature long-term service and to provide practical data for the engineering design of the IHX, aging experiments were performed on alloy 617 and alloy 230 at 900°C and 1000°C. Mechanical properties (hardness and tensile strength) and microstructure were analyzed on post-aging samples after different aging periods (up to 3000 h). Both alloys attained increased hardness during the early stages of aging and dramatically soften after extended aging times. Microstructural analysis including transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and electron backscatter diffraction was carried out to investigate the microstructure evolution during aging. A carbide particle precipitation, growth, and maturing process was observed for both alloys, which corresponds to the changes of the materials' mechanical properties. Few changes in grain boundary character distribution and grain size distribution were observed after aging. In addition, high temperature corrosion studies were performed at 900°C and 1000°C for both alloys. Alloy 230 exhibits much better corrosion resistance at elevated temperature compared with alloy 617. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]