Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Robert Brunet
Documents disponibles écrits par cet auteur
Affiner la rechercheCleaner Design of Single-Product Biotechnological Facilities through the Integration of Process Simulation, Multiobjective Optimization, Life Cycle Assessment, and Principal Component Analysis / Robert Brunet in Industrial & engineering chemistry research, Vol. 51 N° 1 (Janvier 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp. 410-424
Titre : Cleaner Design of Single-Product Biotechnological Facilities through the Integration of Process Simulation, Multiobjective Optimization, Life Cycle Assessment, and Principal Component Analysis Type de document : texte imprimé Auteurs : Robert Brunet, Auteur ; Gonzalo Guillén - Gosalbez, Auteur ; Laureano Jiménez, Auteur Année de publication : 2012 Article en page(s) : pp. 410-424 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Principal component analysis Life cycle (environment) Optimization Design Résumé : Bioprocesses have been typically optimized according to their economic performances. In this work we present a novel framework for their optimal design that allows for the simultaneous consideration of economic and environmental concerns. Our approach relies on the combined use ofsimulation packages, multiobjective optimization (MOO), life cycle assessment (LCA), and principal component analysis (PCA). The capabilities of the proposed methodology are illustrated through its application to the production of the amino acid L-lysine. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=25476485 [article] Cleaner Design of Single-Product Biotechnological Facilities through the Integration of Process Simulation, Multiobjective Optimization, Life Cycle Assessment, and Principal Component Analysis [texte imprimé] / Robert Brunet, Auteur ; Gonzalo Guillén - Gosalbez, Auteur ; Laureano Jiménez, Auteur . - 2012 . - pp. 410-424.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp. 410-424
Mots-clés : Principal component analysis Life cycle (environment) Optimization Design Résumé : Bioprocesses have been typically optimized according to their economic performances. In this work we present a novel framework for their optimal design that allows for the simultaneous consideration of economic and environmental concerns. Our approach relies on the combined use ofsimulation packages, multiobjective optimization (MOO), life cycle assessment (LCA), and principal component analysis (PCA). The capabilities of the proposed methodology are illustrated through its application to the production of the amino acid L-lysine. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=25476485 Reducing the environmental impact of biodiesel production from vegetable oil by use of a solar-assisted steam generation system with heat storage / Robert Brunet in Industrial & engineering chemistry research, Vol. 51 N° 51 (Décembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 51 (Décembre 2012) . - pp. 16660–16669
Titre : Reducing the environmental impact of biodiesel production from vegetable oil by use of a solar-assisted steam generation system with heat storage Type de document : texte imprimé Auteurs : Robert Brunet, Auteur ; Ekaterina Antipova, Auteur ; Gonzalo Guillen-Gosalbez, Auteur Année de publication : 2012 Article en page(s) : pp. 16660–16669 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Biodiesel Vegetable oil Résumé : In this work, we address the problem of reducing the environmental impact of biodiesel plants through their integration with a solar thermal energy system that generates steam. A mathematical model of the solar energy system that includes energy storage is constructed and coupled with a rigorous simulation model of the biodiesel facility developed in Aspen Plus. The solar energy system model takes the form of a bicriteria nonlinear programming (biNLP) formulation that accounts for the simultaneous minimization of cost and global warming potential (GWP). A detailed cost and environmental analysis of the integrated facility is presented based on data available in the literature. The environmental impact is quantified in terms of contribution to GWP using the CML2001 methodology, a framework based on life cycle assessment (LCA) principles. Numerical results indicate that it is possible to reduce the current natural gas consumption required in the biodiesel facility by more than 94.87% compared to the initial base design, which results in an improvement of 19.88% in green house gases (GHG) emissions. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301391h [article] Reducing the environmental impact of biodiesel production from vegetable oil by use of a solar-assisted steam generation system with heat storage [texte imprimé] / Robert Brunet, Auteur ; Ekaterina Antipova, Auteur ; Gonzalo Guillen-Gosalbez, Auteur . - 2012 . - pp. 16660–16669.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 51 (Décembre 2012) . - pp. 16660–16669
Mots-clés : Biodiesel Vegetable oil Résumé : In this work, we address the problem of reducing the environmental impact of biodiesel plants through their integration with a solar thermal energy system that generates steam. A mathematical model of the solar energy system that includes energy storage is constructed and coupled with a rigorous simulation model of the biodiesel facility developed in Aspen Plus. The solar energy system model takes the form of a bicriteria nonlinear programming (biNLP) formulation that accounts for the simultaneous minimization of cost and global warming potential (GWP). A detailed cost and environmental analysis of the integrated facility is presented based on data available in the literature. The environmental impact is quantified in terms of contribution to GWP using the CML2001 methodology, a framework based on life cycle assessment (LCA) principles. Numerical results indicate that it is possible to reduce the current natural gas consumption required in the biodiesel facility by more than 94.87% compared to the initial base design, which results in an improvement of 19.88% in green house gases (GHG) emissions. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301391h