Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yi Zhao
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling copolymerization of styrene and acrylic acid via the free-radical retrograde-precipitation polymerization (FRRPP) process / Yadunandan L Dar in Industrial & engineering chemistry research, Vol. 47 N°10 (Mai 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N°10 (Mai 2008) . - p. 3568–3581
Titre : Modeling copolymerization of styrene and acrylic acid via the free-radical retrograde-precipitation polymerization (FRRPP) process Type de document : texte imprimé Auteurs : Yadunandan L Dar, Auteur ; Yi Zhao, Auteur ; Gerard T. Caneba, Auteur Année de publication : 2008 Article en page(s) : p. 3568–3581 Note générale : Bibliogr. p. 3576-3581 Langues : Anglais (eng) Mots-clés : Acrylic acid--Modeling copolymerization ; Styrene acid ; Achilias Kiparissides model Résumé : The free-radical retrograde-precipitation polymerization (or FRRPP) process is a free-radical-based chain polymerization process that occurs above a lower critical solution temperature (LCST). The unique features of FRRPP have been exploited for the synthesis of novel amphiphilic materials under industrially practicable conditions. In the work described here, the copolymerization of styrene and acrylic acid via FRRPP is modeled and simulated to derive greater understanding behind the polymerization mechanism. The penultimate model is used to calculate the reactivity ratios. These reactivity ratios are used to calculate conversion, composition, and molecular weight distributions using the mole balance equations for the different species in the system and the Achilias Kiparissides model for the calculation of reaction rate coefficients. The results suggest that precipitation and the resulting phase separation and change in diffusivities have a strong impact on the polymerization kinetics. The penultimate model provides a better representation of the reactivities, in comparison to other approaches [article] Modeling copolymerization of styrene and acrylic acid via the free-radical retrograde-precipitation polymerization (FRRPP) process [texte imprimé] / Yadunandan L Dar, Auteur ; Yi Zhao, Auteur ; Gerard T. Caneba, Auteur . - 2008 . - p. 3568–3581.
Bibliogr. p. 3576-3581
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N°10 (Mai 2008) . - p. 3568–3581
Mots-clés : Acrylic acid--Modeling copolymerization ; Styrene acid ; Achilias Kiparissides model Résumé : The free-radical retrograde-precipitation polymerization (or FRRPP) process is a free-radical-based chain polymerization process that occurs above a lower critical solution temperature (LCST). The unique features of FRRPP have been exploited for the synthesis of novel amphiphilic materials under industrially practicable conditions. In the work described here, the copolymerization of styrene and acrylic acid via FRRPP is modeled and simulated to derive greater understanding behind the polymerization mechanism. The penultimate model is used to calculate the reactivity ratios. These reactivity ratios are used to calculate conversion, composition, and molecular weight distributions using the mole balance equations for the different species in the system and the Achilias Kiparissides model for the calculation of reaction rate coefficients. The results suggest that precipitation and the resulting phase separation and change in diffusivities have a strong impact on the polymerization kinetics. The penultimate model provides a better representation of the reactivities, in comparison to other approaches Simultaneous removal of SO2 and NO from flue gas using multicomposite active absorbent / Yi Zhao in Industrial & engineering chemistry research, Vol. 51 N° 1 (Janvier 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp.480–486
Titre : Simultaneous removal of SO2 and NO from flue gas using multicomposite active absorbent Type de document : texte imprimé Auteurs : Yi Zhao, Auteur ; Yinghui Han, Auteur ; Cheng Chen, Auteur Année de publication : 2012 Article en page(s) : pp.480–486 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Gas Multicomposite Résumé : A multicomposite active absorbent was prepared using the liquid-phase complex of NaClO2 and NaClO as well as solid-phase slake lime to simultaneous desulfurization and denitrification at a flue gas circulating fluidized bed (CFB). The effects of influencing factors on the removal efficiencies of SO2 and NO were investigated. Removal efficiencies of 96.5% for SO2 and 73.5% for NO were obtained, respectively, under the optimal experimental conditions. The characterization of the spent absorbent was carried out by using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and chemical analysis methods, from which the simultaneous removal mechanism of SO2 and NO based on this absorbent was proposed. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202617h [article] Simultaneous removal of SO2 and NO from flue gas using multicomposite active absorbent [texte imprimé] / Yi Zhao, Auteur ; Yinghui Han, Auteur ; Cheng Chen, Auteur . - 2012 . - pp.480–486.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp.480–486
Mots-clés : Gas Multicomposite Résumé : A multicomposite active absorbent was prepared using the liquid-phase complex of NaClO2 and NaClO as well as solid-phase slake lime to simultaneous desulfurization and denitrification at a flue gas circulating fluidized bed (CFB). The effects of influencing factors on the removal efficiencies of SO2 and NO were investigated. Removal efficiencies of 96.5% for SO2 and 73.5% for NO were obtained, respectively, under the optimal experimental conditions. The characterization of the spent absorbent was carried out by using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and chemical analysis methods, from which the simultaneous removal mechanism of SO2 and NO based on this absorbent was proposed. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202617h