Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J.R. Johnson
Documents disponibles écrits par cet auteur
Affiner la rechercheAminosilane - functionalized cellulosic polymer for increased carbon dioxide sorption / Diana M. Pacheco in Industrial & engineering chemistry research, Vol. 51 N° 1 (Janvier 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp. 503-514
Titre : Aminosilane - functionalized cellulosic polymer for increased carbon dioxide sorption Type de document : texte imprimé Auteurs : Diana M. Pacheco, Auteur ; J.R. Johnson, Auteur ; William J. Koros, Auteur Année de publication : 2012 Article en page(s) : pp. 503-514 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Sorption Carbon dioxide Résumé : Improvement in the efficiency of CO2 separation from flue gases is a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating, and recovering CO2 on a cost-effective basis. This paper describes the preparation ofan aminosilane-functionalized cellulosic polymer sorbent with enhanced CO2 sorption capacity and promising performance for use in postcombustion carbon capture via rapid temperature-swing adsorption systems. The introduction of aminosilane functionalities onto the backbone of cellulose acetate was achieved by the anhydrous gafting of N-(2-aminoethyl)-3-aminoisobutyldimethylmethoxysilane. The dry sorption capacity of the modified cellulosic polymer reached 27 cc (STP) CO2/cc sorbent (1.01 mmol/g sorbent) at 1 atm and 39 cc (STP) CO2/cc sorbent (1.46 mmol/g sorbent) at 5 atm and 308 K. The amine loading achieved was 5.18 mmol amine(nitrogen)/g sorbent. Exposure to water vapor after the first dry sorption cycle increased the dry sorption capacity of the sorbent by 12% at 1 atm, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. The CO2 sorbent was characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=25476495 [article] Aminosilane - functionalized cellulosic polymer for increased carbon dioxide sorption [texte imprimé] / Diana M. Pacheco, Auteur ; J.R. Johnson, Auteur ; William J. Koros, Auteur . - 2012 . - pp. 503-514.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp. 503-514
Mots-clés : Sorption Carbon dioxide Résumé : Improvement in the efficiency of CO2 separation from flue gases is a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating, and recovering CO2 on a cost-effective basis. This paper describes the preparation ofan aminosilane-functionalized cellulosic polymer sorbent with enhanced CO2 sorption capacity and promising performance for use in postcombustion carbon capture via rapid temperature-swing adsorption systems. The introduction of aminosilane functionalities onto the backbone of cellulose acetate was achieved by the anhydrous gafting of N-(2-aminoethyl)-3-aminoisobutyldimethylmethoxysilane. The dry sorption capacity of the modified cellulosic polymer reached 27 cc (STP) CO2/cc sorbent (1.01 mmol/g sorbent) at 1 atm and 39 cc (STP) CO2/cc sorbent (1.46 mmol/g sorbent) at 5 atm and 308 K. The amine loading achieved was 5.18 mmol amine(nitrogen)/g sorbent. Exposure to water vapor after the first dry sorption cycle increased the dry sorption capacity of the sorbent by 12% at 1 atm, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. The CO2 sorbent was characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=25476495