Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jeanne G. Mason
Documents disponibles écrits par cet auteur
Affiner la rechercheUnderstanding ice crystal accretion and shedding phenomenon in jet engines using a rig test / Jeanne G. Mason in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 4 (Avril 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 08 p.
Titre : Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test Type de document : texte imprimé Auteurs : Jeanne G. Mason, Auteur ; Philip Chow, Auteur ; Dan M. Fuleki, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerodynamics Aerospace industry Freezing Jet engines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The aviation industry has now connected a number of engine power-loss events to the ingestion of atmospheric ice crystals. Ice crystals are believed to penetrate to and eventually accrete on surfaces in the engine core where local air temperatures are warmer than freezing. Research aimed at understanding the accretion and shedding of ice crystals within the engine is being conducted industrywide. Although this specific icing condition is readily produced inside an operating engine, rig testing is the preferred research tool because it has the advantage of good visibility of the ice accretion process and easy access for video documentation. This paper presents one of the first efforts to simulate the warm air/cold ice conditions occurring inside the engine core using a test rig. The test section contains geometry simulating the transition duct between the low and high compressors in a typical jet engine and an airfoil simulating the engine strut connecting the inner and outer surfaces. Test results showed ice formed on the airfoil and other surfaces in the test section at air temperatures warmer than freezing. However, when both the air and surface temperatures were held below freezing, the injected ice did not melt and no ice accretion was observed. Ice only formed on the airfoil when mixed-phase conditions (liquid and ice) were produced, by introducing the ice into a warm airflow. This test concludes that a rig-level ice crystal icing test is feasible and capable of producing ice accretion in a simulated engine environment. As it was the first test of its kind, reporting of these preliminary test results are expected to benefit future experimenters. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test [texte imprimé] / Jeanne G. Mason, Auteur ; Philip Chow, Auteur ; Dan M. Fuleki, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 08 p.
Mots-clés : Aerodynamics Aerospace industry Freezing Jet engines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The aviation industry has now connected a number of engine power-loss events to the ingestion of atmospheric ice crystals. Ice crystals are believed to penetrate to and eventually accrete on surfaces in the engine core where local air temperatures are warmer than freezing. Research aimed at understanding the accretion and shedding of ice crystals within the engine is being conducted industrywide. Although this specific icing condition is readily produced inside an operating engine, rig testing is the preferred research tool because it has the advantage of good visibility of the ice accretion process and easy access for video documentation. This paper presents one of the first efforts to simulate the warm air/cold ice conditions occurring inside the engine core using a test rig. The test section contains geometry simulating the transition duct between the low and high compressors in a typical jet engine and an airfoil simulating the engine strut connecting the inner and outer surfaces. Test results showed ice formed on the airfoil and other surfaces in the test section at air temperatures warmer than freezing. However, when both the air and surface temperatures were held below freezing, the injected ice did not melt and no ice accretion was observed. Ice only formed on the airfoil when mixed-phase conditions (liquid and ice) were produced, by introducing the ice into a warm airflow. This test concludes that a rig-level ice crystal icing test is feasible and capable of producing ice accretion in a simulated engine environment. As it was the first test of its kind, reporting of these preliminary test results are expected to benefit future experimenters. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]