Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Klas Jonshagen
Documents disponibles écrits par cet auteur
Affiner la rechercheA novel approach of retrofitting a combined cycle with post combustion CO2 capture / Klas Jonshagen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 1 (Janvier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 1 (Janvier 2011) . - 07 p.
Titre : A novel approach of retrofitting a combined cycle with post combustion CO2 capture Type de document : texte imprimé Auteurs : Klas Jonshagen, Auteur ; Nikolett Sipöcz, Auteur ; Magnus Genrup, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combined cycle power stations Flue gas desulphurisation Gas turbine power stations Steam power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Most state-of-the-art natural gas-fired combined cycle (NGCC) plants are triple-pressure reheat cycles with efficiencies close to 60%. However, with carbon capture and storage, the efficiency will be penalized by almost 10% units. To limit the energy consumption for a carbon capture NGCC plant, exhaust gas recirculation (EGR) is necessary. Utilizing EGR increases the CO2 content in the gas turbine exhaust while it reduces the flue gas flow to be treated in the capture plant. Nevertheless, due to EGR, the gas turbine will experience a different media with different properties compared with the design case. This study looks into how the turbomachinery reacts to EGR. The work also discusses the potential of further improvements by utilizing pressurized water rather than extraction steam as the heat source for the CO2 stripper. The results show that the required low-pressure level should be elevated to a point close to the intermediate-pressure to achieve optimum efficiency, hence, one pressure level can be omitted. The main tool used for this study is an in-house off-design model based on fully dimensionless groups programmed in the commercially available heat and mass balance program IPSEPRO. The model is based on a GE 109FB machine with a triple-pressure reheat steam cycle. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] A novel approach of retrofitting a combined cycle with post combustion CO2 capture [texte imprimé] / Klas Jonshagen, Auteur ; Nikolett Sipöcz, Auteur ; Magnus Genrup, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 1 (Janvier 2011) . - 07 p.
Mots-clés : Combined cycle power stations Flue gas desulphurisation Gas turbine power stations Steam power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Most state-of-the-art natural gas-fired combined cycle (NGCC) plants are triple-pressure reheat cycles with efficiencies close to 60%. However, with carbon capture and storage, the efficiency will be penalized by almost 10% units. To limit the energy consumption for a carbon capture NGCC plant, exhaust gas recirculation (EGR) is necessary. Utilizing EGR increases the CO2 content in the gas turbine exhaust while it reduces the flue gas flow to be treated in the capture plant. Nevertheless, due to EGR, the gas turbine will experience a different media with different properties compared with the design case. This study looks into how the turbomachinery reacts to EGR. The work also discusses the potential of further improvements by utilizing pressurized water rather than extraction steam as the heat source for the CO2 stripper. The results show that the required low-pressure level should be elevated to a point close to the intermediate-pressure to achieve optimum efficiency, hence, one pressure level can be omitted. The main tool used for this study is an in-house off-design model based on fully dimensionless groups programmed in the commercially available heat and mass balance program IPSEPRO. The model is based on a GE 109FB machine with a triple-pressure reheat steam cycle. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Novel high-performing single-pressure combined cycle with CO2 capture / Nikolett Sipöcz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 4 (Avril 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 08 p.
Titre : Novel high-performing single-pressure combined cycle with CO2 capture Type de document : texte imprimé Auteurs : Nikolett Sipöcz, Auteur ; Klas Jonshagen, Auteur ; Mohsen Assadi, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Air pollution control climate mitigation Cogeneration Heat recovery Power generation economics Power markets Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Novel high-performing single-pressure combined cycle with CO2 capture [texte imprimé] / Nikolett Sipöcz, Auteur ; Klas Jonshagen, Auteur ; Mohsen Assadi, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 08 p.
Mots-clés : Air pollution control climate mitigation Cogeneration Heat recovery Power generation economics Power markets Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Postcombustion CO2 capture for combined cycles utilizing hot-water absorbent regeneration / Klas Jonshagen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 1 (Janvier 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 07 p.
Titre : Postcombustion CO2 capture for combined cycles utilizing hot-water absorbent regeneration Type de document : texte imprimé Auteurs : Klas Jonshagen, Auteur ; Majed Sammak, Auteur ; Magnus Genrup, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Air pollution control Ammonia Boilers Combined cycle power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The partly hot-water driven CO2 capture plant offers a significant potential for improvement in performance when implemented in a combined-cycle power plant (CCPP). It is possible to achieve the same performance with a dual-pressure steam cycle as in a triple-pressure unit. Even a single-pressure plant can attain an efficiency competitive with that achievable with a triple-pressure plant without the hot-water reboiler. The underlying reasons are better heat utilization in the heat recovery unit and less steam extraction to the absorbent regenerating unit(s). In this paper, the design criteria for a combined cycle power plant utilizing hot-water absorbent regeneration will be examined and presented. The results show that the most suitable plant is one with two steam pressure levels. The low-pressure level should be much higher than in a conventional combined cycle in order to increase the amount of heat available in the economizer. The external heat required in the CO2 capture plant is partly supplied by the economizer, allowing temperature optimization in the unit. The maximum value of the low-pressure level is determined by the reboiler, as too great a temperature difference is unfavorable. This work evaluates the benefits of coupling the economizer and the reboiler in a specially designed CCPP. In the CO2 separation plant both monoethanolamine (MEA) and ammonia are evaluated as absorbents. Higher regeneration temperatures can be tolerated in ammonia-based plants than in MEA-based plants. When using a liquid heat carrier the reboiler temperature is not constant on the hot side, which results in greater temperature differences. The temperature difference can be greatly reduced by dividing the regeneration process into two units operating at different pressures. The possibility of extracting more energy from the economizer to replace part of the extracted steam increases the plant efficiency. The results show that very high efficiencies can be achieved without using multiple pressure-levels. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] [article] Postcombustion CO2 capture for combined cycles utilizing hot-water absorbent regeneration [texte imprimé] / Klas Jonshagen, Auteur ; Majed Sammak, Auteur ; Magnus Genrup, Auteur . - 2012 . - 07 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 07 p.
Mots-clés : Air pollution control Ammonia Boilers Combined cycle power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The partly hot-water driven CO2 capture plant offers a significant potential for improvement in performance when implemented in a combined-cycle power plant (CCPP). It is possible to achieve the same performance with a dual-pressure steam cycle as in a triple-pressure unit. Even a single-pressure plant can attain an efficiency competitive with that achievable with a triple-pressure plant without the hot-water reboiler. The underlying reasons are better heat utilization in the heat recovery unit and less steam extraction to the absorbent regenerating unit(s). In this paper, the design criteria for a combined cycle power plant utilizing hot-water absorbent regeneration will be examined and presented. The results show that the most suitable plant is one with two steam pressure levels. The low-pressure level should be much higher than in a conventional combined cycle in order to increase the amount of heat available in the economizer. The external heat required in the CO2 capture plant is partly supplied by the economizer, allowing temperature optimization in the unit. The maximum value of the low-pressure level is determined by the reboiler, as too great a temperature difference is unfavorable. This work evaluates the benefits of coupling the economizer and the reboiler in a specially designed CCPP. In the CO2 separation plant both monoethanolamine (MEA) and ammonia are evaluated as absorbents. Higher regeneration temperatures can be tolerated in ammonia-based plants than in MEA-based plants. When using a liquid heat carrier the reboiler temperature is not constant on the hot side, which results in greater temperature differences. The temperature difference can be greatly reduced by dividing the regeneration process into two units operating at different pressures. The possibility of extracting more energy from the economizer to replace part of the extracted steam increases the plant efficiency. The results show that very high efficiencies can be achieved without using multiple pressure-levels. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...]