Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mohsen Assadi
Documents disponibles écrits par cet auteur
Affiner la rechercheCombined cycles with CO2 capture / Nikolett Sipöcz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 6 (Juin 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 6 (Juin 2010) . - 06 p.
Titre : Combined cycles with CO2 capture : two alternatives for system integration Type de document : texte imprimé Auteurs : Nikolett Sipöcz, Auteur ; Mohsen Assadi, Auteur Année de publication : 2011 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Air pollution control Biofuel Boilers Combined cycle power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As carbon capture and storage technology has grown as a promising option to significantly reduce CO2 emissions, system integration and optimization claim an important and crucial role. This paper presents a comparative study of a gas turbine cycle with postcombustion CO2 separation using an amine-based absorption process with monoethanolamine. The study has been made for a triple pressure reheated 400 MWe natural gas-fuelled combined cycle with exhaust gas recirculation (EGR) to improve capture efficiency. Two different options for the energy supply to the solvent regeneration have been evaluated and compared concerning plant performance. In the first alternative heat is provided by steam extracted internally from the bottoming steam cycle, while in the second option an external biomass-fuelled boiler was utilized to generate the required heat. With this novel configuration the amount of CO2 captured can be even more than 100% if the exhaust gas from the biofuelled boiler is mixed and cleaned together with the main exhaust gas flow from the combined cycle. In order to make an unprejudiced comparison between the two alternatives, the reduced steam turbine efficiency has been taken into consideration and estimated, for the alternative with internal steam extraction. The cycles have been modeled in the commercial heat and mass balance program IPSEPROTM using detailed component models. Utilizing EGR can double the CO2 content of the exhaust gases and reduce the energy need for the separation process by approximately 2% points. Using an external biomass-fuelled boiler as heat source for amine regeneration turns out to be an interesting option due to high CO2 capture effectiveness. However the electrical efficiency of the power plant is reduced compared with the option with internal steam extraction. Another drawback with the external boiler is the higher investment costs but nevertheless, it is flexibility due to the independency from the rest of the power generation system represents a major operational advantage. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000006 [...] [article] Combined cycles with CO2 capture : two alternatives for system integration [texte imprimé] / Nikolett Sipöcz, Auteur ; Mohsen Assadi, Auteur . - 2011 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 6 (Juin 2010) . - 06 p.
Mots-clés : Air pollution control Biofuel Boilers Combined cycle power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : As carbon capture and storage technology has grown as a promising option to significantly reduce CO2 emissions, system integration and optimization claim an important and crucial role. This paper presents a comparative study of a gas turbine cycle with postcombustion CO2 separation using an amine-based absorption process with monoethanolamine. The study has been made for a triple pressure reheated 400 MWe natural gas-fuelled combined cycle with exhaust gas recirculation (EGR) to improve capture efficiency. Two different options for the energy supply to the solvent regeneration have been evaluated and compared concerning plant performance. In the first alternative heat is provided by steam extracted internally from the bottoming steam cycle, while in the second option an external biomass-fuelled boiler was utilized to generate the required heat. With this novel configuration the amount of CO2 captured can be even more than 100% if the exhaust gas from the biofuelled boiler is mixed and cleaned together with the main exhaust gas flow from the combined cycle. In order to make an unprejudiced comparison between the two alternatives, the reduced steam turbine efficiency has been taken into consideration and estimated, for the alternative with internal steam extraction. The cycles have been modeled in the commercial heat and mass balance program IPSEPROTM using detailed component models. Utilizing EGR can double the CO2 content of the exhaust gases and reduce the energy need for the separation process by approximately 2% points. Using an external biomass-fuelled boiler as heat source for amine regeneration turns out to be an interesting option due to high CO2 capture effectiveness. However the electrical efficiency of the power plant is reduced compared with the option with internal steam extraction. Another drawback with the external boiler is the higher investment costs but nevertheless, it is flexibility due to the independency from the rest of the power generation system represents a major operational advantage. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000006 [...] Novel high-performing single-pressure combined cycle with CO2 capture / Nikolett Sipöcz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 4 (Avril 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 08 p.
Titre : Novel high-performing single-pressure combined cycle with CO2 capture Type de document : texte imprimé Auteurs : Nikolett Sipöcz, Auteur ; Klas Jonshagen, Auteur ; Mohsen Assadi, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Air pollution control climate mitigation Cogeneration Heat recovery Power generation economics Power markets Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Novel high-performing single-pressure combined cycle with CO2 capture [texte imprimé] / Nikolett Sipöcz, Auteur ; Klas Jonshagen, Auteur ; Mohsen Assadi, Auteur . - 2012 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 08 p.
Mots-clés : Air pollution control climate mitigation Cogeneration Heat recovery Power generation economics Power markets Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]