Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur S. Can Gülen
Documents disponibles écrits par cet auteur
Affiner la rechercheCombined cycle off-design performance estimation / S. Can Gülen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 1 (Janvier 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 11 p.
Titre : Combined cycle off-design performance estimation : a second-law perspective Type de document : texte imprimé Auteurs : S. Can Gülen, Auteur ; J. Joseph, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Combined cycle power stations Thermodynamics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A combined cycle power plant (or any power plant, for that matter) does very rarely—if ever—run at the exact design point ambient and loading conditions. Depending on the demand for electricity, market conditions, and other considerations of interest to the owner of the plant and the existing ambient conditions, a combined cycle plant will run under boundary conditions that are significantly different from those for which individual components are designed. Accurate calculation of the “off-design” performance of the overall combined cycle system and its key subsystems requires highly detailed and complicated computer models. Such models are crucial to high-fidelity simulation of myriad off-design performance scenarios for control system development to ensure safe and reliable operability in the field. A viable option in lieu of sophisticated system simulation is making use of the normalized curves that are generated from rigorous model runs and applying the factors read from such curves to a known design performance to calculate the off-design performance. This is the common method adopted in the fulfillment of commercial transactions. These curves; however, are highly system-specific and their broad applicability to a wide variety of configurations is limited. Utilizing the key principles of the second law of thermodynamics, this paper describes a simple, physics-based calculation method to estimate the off-design performance of a combined cycle power plant. The method is shown to be quite robust within a wide range of operating regimes for a generic combined cycle system. As such, a second-law-based approach to off-design performance estimation is a highly viable tool for plant engineers and operators in cases where calculation speed with a small sacrifice in fidelity is of prime importance. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] [article] Combined cycle off-design performance estimation : a second-law perspective [texte imprimé] / S. Can Gülen, Auteur ; J. Joseph, Auteur . - 2012 . - 11 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 11 p.
Mots-clés : Combined cycle power stations Thermodynamics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A combined cycle power plant (or any power plant, for that matter) does very rarely—if ever—run at the exact design point ambient and loading conditions. Depending on the demand for electricity, market conditions, and other considerations of interest to the owner of the plant and the existing ambient conditions, a combined cycle plant will run under boundary conditions that are significantly different from those for which individual components are designed. Accurate calculation of the “off-design” performance of the overall combined cycle system and its key subsystems requires highly detailed and complicated computer models. Such models are crucial to high-fidelity simulation of myriad off-design performance scenarios for control system development to ensure safe and reliable operability in the field. A viable option in lieu of sophisticated system simulation is making use of the normalized curves that are generated from rigorous model runs and applying the factors read from such curves to a known design performance to calculate the off-design performance. This is the common method adopted in the fulfillment of commercial transactions. These curves; however, are highly system-specific and their broad applicability to a wide variety of configurations is limited. Utilizing the key principles of the second law of thermodynamics, this paper describes a simple, physics-based calculation method to estimate the off-design performance of a combined cycle power plant. The method is shown to be quite robust within a wide range of operating regimes for a generic combined cycle system. As such, a second-law-based approach to off-design performance estimation is a highly viable tool for plant engineers and operators in cases where calculation speed with a small sacrifice in fidelity is of prime importance. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] Importance of auxiliary power consumption for combined cycle performance / S. Can Gülen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 4 (Avril 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 10 P.
Titre : Importance of auxiliary power consumption for combined cycle performance Type de document : texte imprimé Auteurs : S. Can Gülen, Auteur Année de publication : 2012 Article en page(s) : 10 P. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combined cycle power stations Gas turbine power stations Power consumption Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The key product of a combined cycle power plant is electric power generated for industrial, commercial, and residential customers. In that sense, the key performance metric that establishes the pecking order among thousands of existing, new, old, and planned power plants is the thermal efficiency. This is a ratio of net electric power generated by the plant to its rate of fuel consumption in the gas turbine combustors and, if applicable, heat recovery boiler duct burners. The term in the numerator of that simple ratio is subject to myriad ambiguities and/or misunderstandings resulting primarily from the lack of a standardized definition agreed upon by all major players. More precisely, it is the lack of a standardized definition of the plant auxiliary power consumption (or load) that must be subtracted from the generator output of all turbines in the plant, which then determines the net contribution of that power plant to the electric grid. For a combined cycle power plant, the key contributor to the plant's auxiliary power load is the heat rejection system. In particular, any statement of combined cycle power plant thermal efficiency that does not specify the steam turbine exhaust pressure and the exhaust steam cooling system to achieve that pressure at the site ambient and loading conditions is subject to conjecture. Furthermore, for an assessment of the realism associated with the two in terms of economic and mechanical design feasibility, it is necessary to know the steam turbine exhaust end size and configuration. Using fundamental design principles, this paper provides a precise definition of the plant auxiliary load and quantifies its ramification on the plant's net thermal efficiency. In addition, four standard auxiliary load levels are quantitatively defined based on a rigorous study of heat rejection system design considerations with a second-law perspective. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Importance of auxiliary power consumption for combined cycle performance [texte imprimé] / S. Can Gülen, Auteur . - 2012 . - 10 P.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 10 P.
Mots-clés : Combined cycle power stations Gas turbine power stations Power consumption Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The key product of a combined cycle power plant is electric power generated for industrial, commercial, and residential customers. In that sense, the key performance metric that establishes the pecking order among thousands of existing, new, old, and planned power plants is the thermal efficiency. This is a ratio of net electric power generated by the plant to its rate of fuel consumption in the gas turbine combustors and, if applicable, heat recovery boiler duct burners. The term in the numerator of that simple ratio is subject to myriad ambiguities and/or misunderstandings resulting primarily from the lack of a standardized definition agreed upon by all major players. More precisely, it is the lack of a standardized definition of the plant auxiliary power consumption (or load) that must be subtracted from the generator output of all turbines in the plant, which then determines the net contribution of that power plant to the electric grid. For a combined cycle power plant, the key contributor to the plant's auxiliary power load is the heat rejection system. In particular, any statement of combined cycle power plant thermal efficiency that does not specify the steam turbine exhaust pressure and the exhaust steam cooling system to achieve that pressure at the site ambient and loading conditions is subject to conjecture. Furthermore, for an assessment of the realism associated with the two in terms of economic and mechanical design feasibility, it is necessary to know the steam turbine exhaust end size and configuration. Using fundamental design principles, this paper provides a precise definition of the plant auxiliary load and quantifies its ramification on the plant's net thermal efficiency. In addition, four standard auxiliary load levels are quantitatively defined based on a rigorous study of heat rejection system design considerations with a second-law perspective. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Second law efficiency of the rankine bottoming cycle of a combined cycle power plant / S. Can Gülen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 1 (Janvier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 1 (Janvier 2010) . - 10 p.
Titre : Second law efficiency of the rankine bottoming cycle of a combined cycle power plant Type de document : texte imprimé Auteurs : S. Can Gülen, Auteur ; Raub W. Smith, Auteur Année de publication : 2010 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combined cycle power stations Exergy Gas turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one-third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy, utilizing the second law of thermodynamics. The classical first law approach, i.e., the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000001 [...] [article] Second law efficiency of the rankine bottoming cycle of a combined cycle power plant [texte imprimé] / S. Can Gülen, Auteur ; Raub W. Smith, Auteur . - 2010 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 1 (Janvier 2010) . - 10 p.
Mots-clés : Combined cycle power stations Exergy Gas turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one-third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy, utilizing the second law of thermodynamics. The classical first law approach, i.e., the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000001 [...] A simple parametric model for the analysis of cooled gas turbines / S. Can Gülen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 1 (Janvier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 1 (Janvier 2011) . - 13 p.
Titre : A simple parametric model for the analysis of cooled gas turbines Type de document : texte imprimé Auteurs : S. Can Gülen, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Brayton cycle Combined cycle power stations Fossil fuels Gas turbines Heat transfer Steam power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A natural gas fired gas turbine combined cycle power plant is the most efficient option for fossil fuel based electric power generation that is commercially available. Trade publications report that currently available technology is rated near 60% thermal efficiency. Research and development efforts are in place targeting even higher efficiencies in the next two decades. In the face of diminishing natural resources and increasing carbon dioxide emissions, leading to greenhouse gas effect and global warming, these efforts are even more critical today than in the last century. The main performance driver in a combined cycle power plant is the gas turbine. The basic thermodynamics of the gas turbine, described by the well-known Brayton cycle, dictates that the key design parameters that determine the gas turbine performance are the cycle pressure ratio and maximum cycle temperature at the turbine inlet. While performance calculations for an ideal gas turbine are straightforward with compact mathematical formulations, detailed engineering analysis of real machines with turbine hot gas path cooling requires complex models. Such models, requisite for detailed engineering design work, involve highly empirical heat transfer formulations embedded in a complex system of equations that are amenable only to numerical solutions. A cooled turbine modeling system incorporating all pertinent physical phenomena into compact formulations is developed and presented in this paper. The model is fully physics-based and amenable to simple spreadsheet calculations while illustrating the basic principles with sufficient accuracy and extreme qualitative rigor. This model is valuable not only as a teaching and training tool, it is also suitable to preliminary gas turbine combined cycle design calculations in narrowing down the field of feasible design options. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] A simple parametric model for the analysis of cooled gas turbines [texte imprimé] / S. Can Gülen, Auteur . - 2012 . - 13 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 1 (Janvier 2011) . - 13 p.
Mots-clés : Brayton cycle Combined cycle power stations Fossil fuels Gas turbines Heat transfer Steam power stations Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A natural gas fired gas turbine combined cycle power plant is the most efficient option for fossil fuel based electric power generation that is commercially available. Trade publications report that currently available technology is rated near 60% thermal efficiency. Research and development efforts are in place targeting even higher efficiencies in the next two decades. In the face of diminishing natural resources and increasing carbon dioxide emissions, leading to greenhouse gas effect and global warming, these efforts are even more critical today than in the last century. The main performance driver in a combined cycle power plant is the gas turbine. The basic thermodynamics of the gas turbine, described by the well-known Brayton cycle, dictates that the key design parameters that determine the gas turbine performance are the cycle pressure ratio and maximum cycle temperature at the turbine inlet. While performance calculations for an ideal gas turbine are straightforward with compact mathematical formulations, detailed engineering analysis of real machines with turbine hot gas path cooling requires complex models. Such models, requisite for detailed engineering design work, involve highly empirical heat transfer formulations embedded in a complex system of equations that are amenable only to numerical solutions. A cooled turbine modeling system incorporating all pertinent physical phenomena into compact formulations is developed and presented in this paper. The model is fully physics-based and amenable to simple spreadsheet calculations while illustrating the basic principles with sufficient accuracy and extreme qualitative rigor. This model is valuable not only as a teaching and training tool, it is also suitable to preliminary gas turbine combined cycle design calculations in narrowing down the field of feasible design options. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]