Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Luai M. Al Hadhrami
Documents disponibles écrits par cet auteur
Affiner la rechercheComparative performance of a thermal barrier coating system utilizing platinum aluminide bond coat on alloys CMSX-4® and MAR M® 002DS / H. M. Tawancy in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 1 (Janvier 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 08 p.
Titre : Comparative performance of a thermal barrier coating system utilizing platinum aluminide bond coat on alloys CMSX-4® and MAR M® 002DS Type de document : texte imprimé Auteurs : H. M. Tawancy, Auteur ; Luai M. Al Hadhrami, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Chemical analysis Crystal microstructure Diffusion bonding Directional solidification Electro-optical effects Oxidation Platinum compounds Thermal barrier coatings Thermal stability Yttrium compounds Zirconium compounds Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : It is known that the relative performance of thermal barrier coatings is largely dependent upon the oxidation properties of the bond coat utilized in the system. Also, the oxidation properties of diffusion-type bond coats (aluminides and their modifications) are functions of the superalloy substrate used in blade applications. Therefore, the performance of a given coating system utilizing a diffusion-type bond coat can significantly vary from one superalloy to another. Toward the objective of developing coating systems with more universal applicability, it is essential to understand the mechanisms by which the superalloy substrate can influence the coating performance. In this study, we examined the relative performance of yttria-stabilized zirconia/platinum aluminide coating system on alloys CMSX-4 and MAR M 002DS representing single-crystal and directionally-solidified alloy systems respectively using thermal exposure tests at 1150 °C with a 24-h cycling period to room temperature. Changes in coating microstructure were characterized by various electron-optical techniques. Experiment showed that the coating system on alloy MAR M 002DS had outperformed that on alloy CMSX-4, which could be related to the high thermal stability of the bond coat on alloy MAR M 002DS. From a detailed microstructural characterization, this difference in behavior could be explained at least partially in terms of variation in chemical composition of the two alloys, which was also reflected on the exact failure mechanism of the coating system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] [article] Comparative performance of a thermal barrier coating system utilizing platinum aluminide bond coat on alloys CMSX-4® and MAR M® 002DS [texte imprimé] / H. M. Tawancy, Auteur ; Luai M. Al Hadhrami, Auteur . - 2012 . - 08 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 08 p.
Mots-clés : Chemical analysis Crystal microstructure Diffusion bonding Directional solidification Electro-optical effects Oxidation Platinum compounds Thermal barrier coatings Thermal stability Yttrium compounds Zirconium compounds Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : It is known that the relative performance of thermal barrier coatings is largely dependent upon the oxidation properties of the bond coat utilized in the system. Also, the oxidation properties of diffusion-type bond coats (aluminides and their modifications) are functions of the superalloy substrate used in blade applications. Therefore, the performance of a given coating system utilizing a diffusion-type bond coat can significantly vary from one superalloy to another. Toward the objective of developing coating systems with more universal applicability, it is essential to understand the mechanisms by which the superalloy substrate can influence the coating performance. In this study, we examined the relative performance of yttria-stabilized zirconia/platinum aluminide coating system on alloys CMSX-4 and MAR M 002DS representing single-crystal and directionally-solidified alloy systems respectively using thermal exposure tests at 1150 °C with a 24-h cycling period to room temperature. Changes in coating microstructure were characterized by various electron-optical techniques. Experiment showed that the coating system on alloy MAR M 002DS had outperformed that on alloy CMSX-4, which could be related to the high thermal stability of the bond coat on alloy MAR M 002DS. From a detailed microstructural characterization, this difference in behavior could be explained at least partially in terms of variation in chemical composition of the two alloys, which was also reflected on the exact failure mechanism of the coating system. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] Influence of titanium in nickel-base superalloys on the performance of thermal barrier coatings utilizing gamma−gamma[prime] platinum bond coats / H. M. Tawancy in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 4 (Avril 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 06 p.
Titre : Influence of titanium in nickel-base superalloys on the performance of thermal barrier coatings utilizing gamma−gamma[prime] platinum bond coats Type de document : texte imprimé Auteurs : H. M. Tawancy, Auteur ; Luai M. Al Hadhrami, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Adhesion Aluminium alloys Coating techniques Electron optics Nickel alloys Titanium alloys Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Titanium is a key element in nickel-base superalloys needed with aluminum to achieve the desired volume fraction of the strengthening gamma[prime]-phase. However, depending upon its concentration, titanium can degrade the adherence of aluminum oxide by forming TiO2 particles near the oxide-metal interface. This effect is extended to thermal barrier coating systems where in this case, the bond coat replaces the superalloy as the underlying substrate. Noting that the onset of failure of thermal barrier coating systems coincides with the first spall of the thermally grown oxide, titanium level in the superalloy can have an important effect on the useful life of the coating. Therefore, this study was undertaken to examine the effect of titanium on the performance of a thermal barrier coating system. Included in the study were two Ni-base superalloys with similar chemical composition except for the Ti content and a Pt-containing bond coat consisting of gamma[prime]+gamma-phases all top coated with zirconia stabilized by 7 wt % yttria. Coating performance was evaluated from thermal exposure tests at 1150°C with a 24 h cycling period to room temperature. Various electron-optical techniques were used to characterize the microstructure. The coating system on the low-Ti alloy was found to outperform that on the high-Ti alloy. However, for both alloys, failure was observed to occur by loss of adhesion between the thermally grown oxide and underlying bond coat. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Influence of titanium in nickel-base superalloys on the performance of thermal barrier coatings utilizing gamma−gamma[prime] platinum bond coats [texte imprimé] / H. M. Tawancy, Auteur ; Luai M. Al Hadhrami, Auteur . - 2012 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 06 p.
Mots-clés : Adhesion Aluminium alloys Coating techniques Electron optics Nickel alloys Titanium alloys Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Titanium is a key element in nickel-base superalloys needed with aluminum to achieve the desired volume fraction of the strengthening gamma[prime]-phase. However, depending upon its concentration, titanium can degrade the adherence of aluminum oxide by forming TiO2 particles near the oxide-metal interface. This effect is extended to thermal barrier coating systems where in this case, the bond coat replaces the superalloy as the underlying substrate. Noting that the onset of failure of thermal barrier coating systems coincides with the first spall of the thermally grown oxide, titanium level in the superalloy can have an important effect on the useful life of the coating. Therefore, this study was undertaken to examine the effect of titanium on the performance of a thermal barrier coating system. Included in the study were two Ni-base superalloys with similar chemical composition except for the Ti content and a Pt-containing bond coat consisting of gamma[prime]+gamma-phases all top coated with zirconia stabilized by 7 wt % yttria. Coating performance was evaluated from thermal exposure tests at 1150°C with a 24 h cycling period to room temperature. Various electron-optical techniques were used to characterize the microstructure. The coating system on the low-Ti alloy was found to outperform that on the high-Ti alloy. However, for both alloys, failure was observed to occur by loss of adhesion between the thermally grown oxide and underlying bond coat. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Role of platinum in thermal barrier coatings used in gas turbine blade applications / H. M. Tawancy in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 2 (Fevrier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 06 p.
Titre : Role of platinum in thermal barrier coatings used in gas turbine blade applications Type de document : texte imprimé Auteurs : H. M. Tawancy, Auteur ; Luai M. Al Hadhrami, Auteur Année de publication : 2010 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aluminium compounds Blades Diffusion Electroplating Gas turbines Oxidation Platinum Superalloys Thermal barrier coatings Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Current technology of thermal barrier coating systems used in gas turbine blade applications relies on the use of a metallic bond coat, which has a twofold function: (i) it develops a thin layer of aluminum oxide enhancing the adhesion of the ceramic top coat and (ii) it provides an additional resistance to oxidation. It was the objective of this study to develop an understanding of the role of platinum in bond coats of the diffusion-type deposited on a nickel-based superalloy. Two Pt-containing bond coats were included in the study: (i) a platinum-aluminide and (ii) a bond coat formed by interdiffusion between an electroplated layer of platinum and the superalloy substrate. In both cases, the top ceramic coat was yttria-stabilized zirconia. For reference purposes, a simple aluminide bond coat free of Pt was also included in the study. Thermal exposure tests at 1150°C with a 24 h cycling period at room temperature were used to compare the coating performance. Microstructural features were characterized by various electron-optical techniques. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Of the two bond coats studied, a surface layer of Pt-rich gamma prime phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and beta phase. This could be related to the effectiveness of gamma prime phase as a sink for titanium minimizing its detrimental effect on the adherence of aluminum oxide. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] [article] Role of platinum in thermal barrier coatings used in gas turbine blade applications [texte imprimé] / H. M. Tawancy, Auteur ; Luai M. Al Hadhrami, Auteur . - 2010 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 06 p.
Mots-clés : Aluminium compounds Blades Diffusion Electroplating Gas turbines Oxidation Platinum Superalloys Thermal barrier coatings Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Current technology of thermal barrier coating systems used in gas turbine blade applications relies on the use of a metallic bond coat, which has a twofold function: (i) it develops a thin layer of aluminum oxide enhancing the adhesion of the ceramic top coat and (ii) it provides an additional resistance to oxidation. It was the objective of this study to develop an understanding of the role of platinum in bond coats of the diffusion-type deposited on a nickel-based superalloy. Two Pt-containing bond coats were included in the study: (i) a platinum-aluminide and (ii) a bond coat formed by interdiffusion between an electroplated layer of platinum and the superalloy substrate. In both cases, the top ceramic coat was yttria-stabilized zirconia. For reference purposes, a simple aluminide bond coat free of Pt was also included in the study. Thermal exposure tests at 1150°C with a 24 h cycling period at room temperature were used to compare the coating performance. Microstructural features were characterized by various electron-optical techniques. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Of the two bond coats studied, a surface layer of Pt-rich gamma prime phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and beta phase. This could be related to the effectiveness of gamma prime phase as a sink for titanium minimizing its detrimental effect on the adherence of aluminum oxide. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...]