Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur David L. Ransom
Documents disponibles écrits par cet auteur
Affiner la rechercheCentrifugal compressor stability prediction using a new physics based approach / J. Jeffrey Moore in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 8 (Août 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 8 (Août 2010) . - 08 p.
Titre : Centrifugal compressor stability prediction using a new physics based approach Type de document : texte imprimé Auteurs : J. Jeffrey Moore, Auteur ; David L. Ransom, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Compressors Computational fluid dynamics Flow simulation Gas industry Impellers Mechanical stability Natural gas technology Petroleum industry Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The accurate prediction of centrifugal compressor stability continues to be an important area of interest in the oil and gas industries. Ensuring stability is critical to the cost-effective installation and operation of these machines in remote environments, where field stability problems are much more expensive to diagnose and correct. Current industry standards and tools for the prediction of impeller destabilizing forces are based on empirical methods that, to date, have served fairly well for systems with reasonable stability margins. However, as stability margins are decreased, use of a modeling method that is more physics based and can better represent the observed trends in machine behavior at low stability margins is required. Furthermore, the development of megaclass liquefied natural gas (LNG) compressors and ultra-high pressure re-injection compressors provides further motivation to improve accuracy. In this paper, a new physics based expression for the prediction of impeller cross-coupling, previously described by Moore et al. (“Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics,” ASME Paper No. GT2007-28181), is further investigated by analyzing several classes and scale factors of impellers ranging from 2D designs used in re-injection to full 3D impellers typically used in LNG. The new expression is based on both computational fluid dynamics simulation and experimental test data from a known instability. These results are then applied to two case studies of marginally stable and unstable compressors in the field that were studied by the authors' company. For each case study, the system stability is evaluated using both the new physics based expression as well as the more traditional empirical approaches. Comparisons are made for overall stability prediction as well as sensitivity to system changes. Conclusions are made regarding the applicability and limits of this new approach. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Centrifugal compressor stability prediction using a new physics based approach [texte imprimé] / J. Jeffrey Moore, Auteur ; David L. Ransom, Auteur . - 2011 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 8 (Août 2010) . - 08 p.
Mots-clés : Compressors Computational fluid dynamics Flow simulation Gas industry Impellers Mechanical stability Natural gas technology Petroleum industry Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The accurate prediction of centrifugal compressor stability continues to be an important area of interest in the oil and gas industries. Ensuring stability is critical to the cost-effective installation and operation of these machines in remote environments, where field stability problems are much more expensive to diagnose and correct. Current industry standards and tools for the prediction of impeller destabilizing forces are based on empirical methods that, to date, have served fairly well for systems with reasonable stability margins. However, as stability margins are decreased, use of a modeling method that is more physics based and can better represent the observed trends in machine behavior at low stability margins is required. Furthermore, the development of megaclass liquefied natural gas (LNG) compressors and ultra-high pressure re-injection compressors provides further motivation to improve accuracy. In this paper, a new physics based expression for the prediction of impeller cross-coupling, previously described by Moore et al. (“Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics,” ASME Paper No. GT2007-28181), is further investigated by analyzing several classes and scale factors of impellers ranging from 2D designs used in re-injection to full 3D impellers typically used in LNG. The new expression is based on both computational fluid dynamics simulation and experimental test data from a known instability. These results are then applied to two case studies of marginally stable and unstable compressors in the field that were studied by the authors' company. For each case study, the system stability is evaluated using both the new physics based expression as well as the more traditional empirical approaches. Comparisons are made for overall stability prediction as well as sensitivity to system changes. Conclusions are made regarding the applicability and limits of this new approach. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Rotordynamic force prediction of centrifugal compressor impellers using computational fluid dynamics / J. Jeffrey Moore in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 4 (Avril 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 10 p.
Titre : Rotordynamic force prediction of centrifugal compressor impellers using computational fluid dynamics Type de document : texte imprimé Auteurs : J. Jeffrey Moore, Auteur ; David L. Ransom, Auteur ; Flavia Viana, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerodynamics Compressors Computational fluid dynamics Impellers Production equipment Rotors Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The energy industry depends on centrifugal compressors to produce, process, reinject, and transport many different gases. Centrifugal compressors use one or more impellers to impart momentum to the flowing gas and, thereby, produce an increase in pressure through diffusion. As the operating pressure in a compressor increases, the fluid-rotor interaction at the seals and impellers become more important. Also, the new generation of megascale liquefied natural gas compressors is dependent on accurate assessment of these forces. The aerodynamic forces and cross-coupled stiffness from the impellers cannot be accurately predicted with traditional methods and must be estimated with semiempirical formulations. The result of these inaccuracies is a potential for compressor designs that can experience unexpected, dangerous, and damaging instabilities and subsynchronous vibrations. The current investigation is intended to advance the state of the art to achieve an improved, physics-based method of predicted aerodynamic destabilizing cross-coupling forces on centrifugal compressor impellers using computational fluid dynamics (CFD). CFD was employed in this study to predict the impeller-fluid interaction forces, which gives rise to the aerodynamic cross coupling. The procedure utilized in this study was developed by Moore and Palazzolo (2002, “Rotordynamic Force Prediction of Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques With Combined Primary Secondary Flow Model,” ASME J. Eng. Gas Turbines Power, 123, pp. 910–918), which applied the method to liquid pump impellers. Their results showed good correlation to test data. Unfortunately, no such data exist for centrifugal compressors. Therefore, in order to validate the present model, comparisons will be made to predict the instability of an industrial centrifugal compressor. A parametric CFD study is then presented leading to a new analytical expression for predicting the cross-coupled stiffness for centrifugal impellers. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Rotordynamic force prediction of centrifugal compressor impellers using computational fluid dynamics [texte imprimé] / J. Jeffrey Moore, Auteur ; David L. Ransom, Auteur ; Flavia Viana, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 4 (Avril 2011) . - 10 p.
Mots-clés : Aerodynamics Compressors Computational fluid dynamics Impellers Production equipment Rotors Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The energy industry depends on centrifugal compressors to produce, process, reinject, and transport many different gases. Centrifugal compressors use one or more impellers to impart momentum to the flowing gas and, thereby, produce an increase in pressure through diffusion. As the operating pressure in a compressor increases, the fluid-rotor interaction at the seals and impellers become more important. Also, the new generation of megascale liquefied natural gas compressors is dependent on accurate assessment of these forces. The aerodynamic forces and cross-coupled stiffness from the impellers cannot be accurately predicted with traditional methods and must be estimated with semiempirical formulations. The result of these inaccuracies is a potential for compressor designs that can experience unexpected, dangerous, and damaging instabilities and subsynchronous vibrations. The current investigation is intended to advance the state of the art to achieve an improved, physics-based method of predicted aerodynamic destabilizing cross-coupling forces on centrifugal compressor impellers using computational fluid dynamics (CFD). CFD was employed in this study to predict the impeller-fluid interaction forces, which gives rise to the aerodynamic cross coupling. The procedure utilized in this study was developed by Moore and Palazzolo (2002, “Rotordynamic Force Prediction of Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques With Combined Primary Secondary Flow Model,” ASME J. Eng. Gas Turbines Power, 123, pp. 910–918), which applied the method to liquid pump impellers. Their results showed good correlation to test data. Unfortunately, no such data exist for centrifugal compressors. Therefore, in order to validate the present model, comparisons will be made to predict the instability of an industrial centrifugal compressor. A parametric CFD study is then presented leading to a new analytical expression for predicting the cross-coupled stiffness for centrifugal impellers. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]