Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jim Sirbaugh
Documents disponibles écrits par cet auteur
Affiner la rechercheAn investigation into the effects of highly transient flight maneuvers with heat and mass transfer on the T-38 air force trainer inlet / Alan Hale in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 3 (Mars 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 3 (Mars 2011) . - 10 p.
Titre : An investigation into the effects of highly transient flight maneuvers with heat and mass transfer on the T-38 air force trainer inlet Type de document : texte imprimé Auteurs : Alan Hale, Auteur ; Andrew Hughes, Auteur ; Jim Sirbaugh, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerospace propulsion Aircraft testing Boundary layers Computational fluid dynamics Cooling Distortion Jet engines Mass transfer Military aircraft Nozzles Supersonic flow Thermal energy storage Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The T-38 talon currently serves as the primary United States Air Force trainer for fighter aircraft. This supersonic trainer was developed in the 1960s but continues to be used today as the result of various modernization programs throughout its service life. The latest propulsion modernization program focused on improved takeoff performance of the T-38's inlets, improved reliability of the twin J85 afterburning turbojet engines, and reduced drag with an improved exhaust nozzle design. The T-38's inlet includes bleed holes upstream of the engine face to provide cooling airflow from the inlet to the engine bay. However, at various flight conditions, the bay air is pressurized relative to the inlet, resulting in reverse flow of hot engine bay air into the inlet. This reverse flow causes total temperature distortion that may reduce the engine stability margin. Partial inlet instrumentation of the left engine was used to estimate the total temperature distortion associated with reverse flow, however, flight testing of highly transient maneuvers revealed levels of total temperature distortion greater than that predicted for reverse flow alone. This discovery led to the hypothesis that thermal energy storage of the aluminum inlet during transient flight maneuvers resulted in increased temperature distortion at the engine face. Flight data analysis demonstrated the need for a near-real-time thermal inlet distortion analysis capability. A two-dimensional (2D) transient axisymmetric heat and mass transfer model was developed through the use of a lumped-parameter boundary-layer model to simulate the inlet flow and determine the time-dependent inlet duct heat transfer. This model was validated with transient 2D computational fluid dynamics and two flight maneuvers. The analysis of flight maneuvers revealed that in the absence of engine bay air re-ingestion, the time lag associated with the heating and cooling of the inlet walls generates radial temperature distortion, which has the effect of reducing engine stability margin up to 5.44% for the maneuvers analyzed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] An investigation into the effects of highly transient flight maneuvers with heat and mass transfer on the T-38 air force trainer inlet [texte imprimé] / Alan Hale, Auteur ; Andrew Hughes, Auteur ; Jim Sirbaugh, Auteur . - 2012 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 3 (Mars 2011) . - 10 p.
Mots-clés : Aerospace propulsion Aircraft testing Boundary layers Computational fluid dynamics Cooling Distortion Jet engines Mass transfer Military aircraft Nozzles Supersonic flow Thermal energy storage Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The T-38 talon currently serves as the primary United States Air Force trainer for fighter aircraft. This supersonic trainer was developed in the 1960s but continues to be used today as the result of various modernization programs throughout its service life. The latest propulsion modernization program focused on improved takeoff performance of the T-38's inlets, improved reliability of the twin J85 afterburning turbojet engines, and reduced drag with an improved exhaust nozzle design. The T-38's inlet includes bleed holes upstream of the engine face to provide cooling airflow from the inlet to the engine bay. However, at various flight conditions, the bay air is pressurized relative to the inlet, resulting in reverse flow of hot engine bay air into the inlet. This reverse flow causes total temperature distortion that may reduce the engine stability margin. Partial inlet instrumentation of the left engine was used to estimate the total temperature distortion associated with reverse flow, however, flight testing of highly transient maneuvers revealed levels of total temperature distortion greater than that predicted for reverse flow alone. This discovery led to the hypothesis that thermal energy storage of the aluminum inlet during transient flight maneuvers resulted in increased temperature distortion at the engine face. Flight data analysis demonstrated the need for a near-real-time thermal inlet distortion analysis capability. A two-dimensional (2D) transient axisymmetric heat and mass transfer model was developed through the use of a lumped-parameter boundary-layer model to simulate the inlet flow and determine the time-dependent inlet duct heat transfer. This model was validated with transient 2D computational fluid dynamics and two flight maneuvers. The analysis of flight maneuvers revealed that in the absence of engine bay air re-ingestion, the time lag associated with the heating and cooling of the inlet walls generates radial temperature distortion, which has the effect of reducing engine stability margin up to 5.44% for the maneuvers analyzed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]