Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Fabio De Bellis
Documents disponibles écrits par cet auteur
Affiner la rechercheAn immersed particle heat exchanger for externally fired and heat recovery gas turbines / Luciano Andrea Catalano in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 3 (Mars 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 3 (Mars 2011) . - 07 p.
Titre : An immersed particle heat exchanger for externally fired and heat recovery gas turbines Type de document : texte imprimé Auteurs : Luciano Andrea Catalano, Auteur ; Fabio De Bellis, Auteur ; Riccardo Amirante, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Computational fluid dynamics Gas turbines Heat exchangers Heat recovery Heat transfer Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Designing and manufacturing high-efficiency heat exchangers is usually considered a limiting factor in the development of gas turbines employing either heat recovery Joule–Brayton cycles or external combustion. In this work, an innovative heat exchanger is proposed, modeled, and partially tested to validate the developed numerical model employed for its design. The heat exchanger is based on an intermediate medium (aluminum oxide Al2O3) flowing in countercurrent through an hot stream of gas. In this process, heat can be absorbed from the hot gas, temporarily stored, and then similarly released in a second pipe, where a cold stream is warmed up. A flow of alumina particles with very small diameter (of the order of hundreds of microns) can be employed to enhance the heat transfer. Experimental tests demonstrate that simple one-dimensional steady equations, also neglecting conduction in the particles, can be effectively employed to simulate the flow in the vertical part of the pipe, namely, to compute the pipe length required to achieve a prescribed heat exchange. On the other side, full three-dimensional computational fluid dynamics simulations have been performed to demonstrate that a more thorough gas flow and particle displacement analysis is needed to avoid a bad distribution of alumina particles and, thus, to achieve high thermal efficiency. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] An immersed particle heat exchanger for externally fired and heat recovery gas turbines [texte imprimé] / Luciano Andrea Catalano, Auteur ; Fabio De Bellis, Auteur ; Riccardo Amirante, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 3 (Mars 2011) . - 07 p.
Mots-clés : Computational fluid dynamics Gas turbines Heat exchangers Heat recovery Heat transfer Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Designing and manufacturing high-efficiency heat exchangers is usually considered a limiting factor in the development of gas turbines employing either heat recovery Joule–Brayton cycles or external combustion. In this work, an innovative heat exchanger is proposed, modeled, and partially tested to validate the developed numerical model employed for its design. The heat exchanger is based on an intermediate medium (aluminum oxide Al2O3) flowing in countercurrent through an hot stream of gas. In this process, heat can be absorbed from the hot gas, temporarily stored, and then similarly released in a second pipe, where a cold stream is warmed up. A flow of alumina particles with very small diameter (of the order of hundreds of microns) can be employed to enhance the heat transfer. Experimental tests demonstrate that simple one-dimensional steady equations, also neglecting conduction in the particles, can be effectively employed to simulate the flow in the vertical part of the pipe, namely, to compute the pipe length required to achieve a prescribed heat exchange. On the other side, full three-dimensional computational fluid dynamics simulations have been performed to demonstrate that a more thorough gas flow and particle displacement analysis is needed to avoid a bad distribution of alumina particles and, thus, to achieve high thermal efficiency. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]