Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Berthold E. Noll
Documents disponibles écrits par cet auteur
Affiner la rechercheComputational modeling of turbulent mixing of a transverse jet / Elizaveta M. Ivanova in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Titre : Computational modeling of turbulent mixing of a transverse jet Type de document : texte imprimé Auteurs : Elizaveta M. Ivanova, Auteur ; Berthold E. Noll, Auteur ; Aigner, Manfred, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Jets Navier-Stokes equations Numerical analysis Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents numerical simulations of turbulent mixing of a jet in crossflow. The test case is chosen to resemble scalar mixing processes in the premixing zones of gas turbine combustion chambers. Steady and unsteady simulations employing three different computational approaches are presented: steady Reynolds-averaged Navier–Stokes, unsteady Reynolds-averaged Navier–Stokes, and scale-adaptive simulations. Presented results comprise the (time-averaged) profiles of flow velocities, turbulent kinetic energy of the flow, Reynolds stresses, passive scalar distribution, turbulent scalar fluxes, and the turbulent variance of the passive scalar. All presented results are directly validated against experimental data. Additionally, two parameter studies are presented. Both studies are related to the accuracy of the turbulent scalar mixing predictions for all used simulation methods. In the first study, the dependence of the scalar mixing predictions on the value of the turbulent Schmidt number is considered. In the second study, the dependence of the predicted turbulent scalar variance on the used modeling approach is analyzed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Computational modeling of turbulent mixing of a transverse jet [texte imprimé] / Elizaveta M. Ivanova, Auteur ; Berthold E. Noll, Auteur ; Aigner, Manfred, Auteur . - 2012 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 07 p.
Mots-clés : Jets Navier-Stokes equations Numerical analysis Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper presents numerical simulations of turbulent mixing of a jet in crossflow. The test case is chosen to resemble scalar mixing processes in the premixing zones of gas turbine combustion chambers. Steady and unsteady simulations employing three different computational approaches are presented: steady Reynolds-averaged Navier–Stokes, unsteady Reynolds-averaged Navier–Stokes, and scale-adaptive simulations. Presented results comprise the (time-averaged) profiles of flow velocities, turbulent kinetic energy of the flow, Reynolds stresses, passive scalar distribution, turbulent scalar fluxes, and the turbulent variance of the passive scalar. All presented results are directly validated against experimental data. Additionally, two parameter studies are presented. Both studies are related to the accuracy of the turbulent scalar mixing predictions for all used simulation methods. In the first study, the dependence of the scalar mixing predictions on the value of the turbulent Schmidt number is considered. In the second study, the dependence of the predicted turbulent scalar variance on the used modeling approach is analyzed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Numerical simulations of turbulent mixing and autoignition of hydrogen fuel at reheat combustor operating conditions / Elizaveta M. Ivanova in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 4 (Avril 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 4 (Avril 2012) . - 07 p.
Titre : Numerical simulations of turbulent mixing and autoignition of hydrogen fuel at reheat combustor operating conditions Type de document : texte imprimé Auteurs : Elizaveta M. Ivanova, Auteur ; Berthold E. Noll, Auteur ; Peter Griebel, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Flow simulation Ignition Navier-Stokes equations Numerical analysis Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T>1000K,p=15 bar). Based on the results of the experimental study for the same flow configuration and operating conditions, two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here, the steady-state Reynolds-averaged Navier- Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work, the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O'Conaire et al. (Int. J. Chem. Kinet., 36(11), 2004). As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000004 [...] [article] Numerical simulations of turbulent mixing and autoignition of hydrogen fuel at reheat combustor operating conditions [texte imprimé] / Elizaveta M. Ivanova, Auteur ; Berthold E. Noll, Auteur ; Peter Griebel, Auteur . - 2012 . - 07 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 4 (Avril 2012) . - 07 p.
Mots-clés : Flow simulation Ignition Navier-Stokes equations Numerical analysis Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T>1000K,p=15 bar). Based on the results of the experimental study for the same flow configuration and operating conditions, two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here, the steady-state Reynolds-averaged Navier- Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work, the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O'Conaire et al. (Int. J. Chem. Kinet., 36(11), 2004). As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000004 [...]