Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Paolo Gobbato
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical and experimental analysis of the temperature distribution in a hydrogen fuelled combustor for a 10 MW gas turbine / Massimo Masi in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 2 (Fevrier 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Titre : Numerical and experimental analysis of the temperature distribution in a hydrogen fuelled combustor for a 10 MW gas turbine Type de document : texte imprimé Auteurs : Massimo Masi, Auteur ; Paolo Gobbato, Auteur ; Andrea Toffolo, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Chemically reactive flow Combustion Computational fluid dynamics Cooling Engines Flow simulation Gas turbines Numerical analysis Temperature distribution Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Proper cooling of the hot components and an optimal temperature distribution at the turbine inlet are fundamental targets for gas turbine combustors. In particular, the temperature distribution at the combustor discharge is a critical issue for the durability of the turbine blades and the high performance of the engine. At present, CFD is a widely used tool to simulate the reacting flow inside gas turbine combustors. This paper presents a numerical analysis of a single can type combustor designed to be fed both with hydrogen and natural gas. The combustor also features a steam injection system to restrain the NOx pollutants. The simulations were carried out to quantify the effect of fuel type and steam injection on the temperature field. The CFD model employs a computationally low cost approach, thus the physical domain is meshed with a coarse grid. A full-scale test campaign was performed on the combustor: temperatures at the liner wall and the combustor outlet were acquired at different operating conditions. These experimental data, which are discussed, were used to evaluate the capability of the present CFD model to predict temperature values for combustor operation with different fuels and steam to fuel ratios. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Numerical and experimental analysis of the temperature distribution in a hydrogen fuelled combustor for a 10 MW gas turbine [texte imprimé] / Massimo Masi, Auteur ; Paolo Gobbato, Auteur ; Andrea Toffolo, Auteur . - 2012 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 2 (Fevrier 2011) . - 09 p.
Mots-clés : Blades Chemically reactive flow Combustion Computational fluid dynamics Cooling Engines Flow simulation Gas turbines Numerical analysis Temperature distribution Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Proper cooling of the hot components and an optimal temperature distribution at the turbine inlet are fundamental targets for gas turbine combustors. In particular, the temperature distribution at the combustor discharge is a critical issue for the durability of the turbine blades and the high performance of the engine. At present, CFD is a widely used tool to simulate the reacting flow inside gas turbine combustors. This paper presents a numerical analysis of a single can type combustor designed to be fed both with hydrogen and natural gas. The combustor also features a steam injection system to restrain the NOx pollutants. The simulations were carried out to quantify the effect of fuel type and steam injection on the temperature field. The CFD model employs a computationally low cost approach, thus the physical domain is meshed with a coarse grid. A full-scale test campaign was performed on the combustor: temperatures at the liner wall and the combustor outlet were acquired at different operating conditions. These experimental data, which are discussed, were used to evaluate the capability of the present CFD model to predict temperature values for combustor operation with different fuels and steam to fuel ratios. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]