Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mirko R. Bothien
Documents disponibles écrits par cet auteur
Affiner la rechercheComparison of linear stability analysis with experiments by actively tuning the acoustic boundary conditions of a premixed combustor / Mirko R. Bothien in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 12 (Décembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 12 (Décembre 2010) . - 10 p.
Titre : Comparison of linear stability analysis with experiments by actively tuning the acoustic boundary conditions of a premixed combustor Type de document : texte imprimé Auteurs : Mirko R. Bothien, Auteur ; Jonas P. Moeck, Auteur ; Christian Oliver Paschereit, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Acoustic analysis Combustion Flow instability Stability Swirling flow Test equipment Thermoacoustics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Linear stability analysis by means of low-order network models is widely spread in industry and academia to predict the thermoacoustic characteristics of combustion systems. Even though a vast amount of publications on this topic exist, much less is reported on the predictive capabilities of such stability analyses with respect to real system behavior. In this sense, little effort has been made on investigating if predicted critical parameter values, for which the combustion system switches from stability to instability, agree with experimental observations. Here, this lack of a comprehensive experimental validation is addressed by using a model-based control scheme. This scheme is able to actively manipulate the acoustic field of a combustion test rig by imposing quasi-arbitrary reflection coefficients. It is employed to continuously vary the downstream reflection coefficient of an atmospheric swirl-stabilized combustion test rig from fully reflecting to anechoic. By doing so, the transient behavior of the system can be studied. In addition to that, an extension of the common procedure, where the stability of an operating point is classified solely based on the presence of high amplitude pressure pulsations and their frequency, is given. Generally, the predicted growth rates are only compared with measurements with respect to their sign, which obviously lacks a quantitative component. In contrast to that, in this paper, validation of linear stability analysis is conducted by comparing calculated and experimentally determined linear growth rates of unstable modes. Besides this, experimental results and model predictions are also compared in terms of frequency of the least stable mode. Excellent agreement between computations from the model and experiments is found. The concept is also used for active control of combustion instabilities. By tuning the downstream reflectivity of the combustion test rig, thermoacoustic instabilities can be suppressed. The underlying mechanism is an increase in the acoustic energy losses across the system boundary. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Comparison of linear stability analysis with experiments by actively tuning the acoustic boundary conditions of a premixed combustor [texte imprimé] / Mirko R. Bothien, Auteur ; Jonas P. Moeck, Auteur ; Christian Oliver Paschereit, Auteur . - 2011 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 12 (Décembre 2010) . - 10 p.
Mots-clés : Acoustic analysis Combustion Flow instability Stability Swirling flow Test equipment Thermoacoustics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Linear stability analysis by means of low-order network models is widely spread in industry and academia to predict the thermoacoustic characteristics of combustion systems. Even though a vast amount of publications on this topic exist, much less is reported on the predictive capabilities of such stability analyses with respect to real system behavior. In this sense, little effort has been made on investigating if predicted critical parameter values, for which the combustion system switches from stability to instability, agree with experimental observations. Here, this lack of a comprehensive experimental validation is addressed by using a model-based control scheme. This scheme is able to actively manipulate the acoustic field of a combustion test rig by imposing quasi-arbitrary reflection coefficients. It is employed to continuously vary the downstream reflection coefficient of an atmospheric swirl-stabilized combustion test rig from fully reflecting to anechoic. By doing so, the transient behavior of the system can be studied. In addition to that, an extension of the common procedure, where the stability of an operating point is classified solely based on the presence of high amplitude pressure pulsations and their frequency, is given. Generally, the predicted growth rates are only compared with measurements with respect to their sign, which obviously lacks a quantitative component. In contrast to that, in this paper, validation of linear stability analysis is conducted by comparing calculated and experimentally determined linear growth rates of unstable modes. Besides this, experimental results and model predictions are also compared in terms of frequency of the least stable mode. Excellent agreement between computations from the model and experiments is found. The concept is also used for active control of combustion instabilities. By tuning the downstream reflectivity of the combustion test rig, thermoacoustic instabilities can be suppressed. The underlying mechanism is an increase in the acoustic energy losses across the system boundary. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Tuning of the acoustic boundary conditions of combustion test rigs with active control / Mirko R. Bothien in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 10 p.
Titre : Tuning of the acoustic boundary conditions of combustion test rigs with active control : extension to actuators with nonlinear response Type de document : texte imprimé Auteurs : Mirko R. Bothien, Auteur ; Christian Oliver Paschereit, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Combustion equipment Gas turbines Nonlinear control systems Thermoacoustics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the design process, new burners are generally tested in combustion test rigs. With these experiments, as well as with computational fluid dynamics, finite element calculations, and low-order network models, the burner's performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behavior and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavorable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme, which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, an actuator with higher control authority is investigated, which could be used to apply the control scheme in industrial test rigs. The actuator modulates an air mass flow to generate an acoustic excitation. However, in contrast to the woofers, it exhibits a strong nonlinear response regarding amplitude and frequency. Thus, the control scheme is further developed to account for these nonlinear transfer characteristics. This modified control scheme is then applied to change the acoustic boundary conditions of an atmospheric swirl-stabilized combustion test rig. Excellent results were obtained in terms of changing the reflection coefficient to different levels. By manipulating its phase, different resonance frequencies could be imposed without any hardware changes. The nonlinear control approach is not restricted to the actuator used in this study and might therefore be of use for other actuators as well. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Tuning of the acoustic boundary conditions of combustion test rigs with active control : extension to actuators with nonlinear response [texte imprimé] / Mirko R. Bothien, Auteur ; Christian Oliver Paschereit, Auteur . - 2011 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 10 p.
Mots-clés : Combustion Combustion equipment Gas turbines Nonlinear control systems Thermoacoustics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the design process, new burners are generally tested in combustion test rigs. With these experiments, as well as with computational fluid dynamics, finite element calculations, and low-order network models, the burner's performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behavior and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavorable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme, which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, an actuator with higher control authority is investigated, which could be used to apply the control scheme in industrial test rigs. The actuator modulates an air mass flow to generate an acoustic excitation. However, in contrast to the woofers, it exhibits a strong nonlinear response regarding amplitude and frequency. Thus, the control scheme is further developed to account for these nonlinear transfer characteristics. This modified control scheme is then applied to change the acoustic boundary conditions of an atmospheric swirl-stabilized combustion test rig. Excellent results were obtained in terms of changing the reflection coefficient to different levels. By manipulating its phase, different resonance frequencies could be imposed without any hardware changes. The nonlinear control approach is not restricted to the actuator used in this study and might therefore be of use for other actuators as well. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]