Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur S. Pasupathy Venkateswaran
Documents disponibles écrits par cet auteur
Affiner la rechercheEffects of the re-entrant bowl geometry on a DI turbocharged diesel engine performance and emissions / S. Pasupathy Venkateswaran in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 12 (Décembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 12 (Décembre 2010) . - 10 p.
Titre : Effects of the re-entrant bowl geometry on a DI turbocharged diesel engine performance and emissions : a CFD approach Type de document : texte imprimé Auteurs : S. Pasupathy Venkateswaran, Auteur ; G. Nagarajan, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Computational fluid dynamics Diesel engines Diffusion Fuel systems Shapes (structures) Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The purpose of this study is to investigate the influence of re-entrant bowl geometry on both engine performance and combustion efficiency in a direct injection (DI), turbocharged diesel engine for heavy-duty applications. The piston bowl design is one of the most important factors that affect the air–fuel mixing and the subsequent combustion and pollutant formation processes in a DI diesel engine. The bowl geometry and dimensions, such as the pip region, bowl lip area, and toroidal radius, are all known to have an effect on the in-cylinder mixing and combustion processes. Based on the idea of enhancing diffusion combustion at the later stage of the combustion period, three different bowl geometries, namely, bowl 1 (baseline), bowl 2, and bowl 3 were selected and investigated. All the other relevant parameters, namely, compression ratio, maximum diameter of the bowl, squish clearance and injection rate were kept constant. A commercial CFD code STAR-CD was used to model the in-cylinder flows and combustion process, and experimental results of the baseline bowl were used to validate the numerical model. The simulation results show that, bowl 3 enhance the turbulence and hence results in better air-fuel mixing among all three bowls in a DI diesel engine. As a result, the indicated specific fuel consumption and soot emission reduced although the NOx emission is increased owing to better mixing and a faster combustion process. Globally, since the reduction in soot is larger (−46% as regards baseline) than the increase in NOx (+15% as regards baseline), it can be concluded that bowl 3 is the best trade-off between performance and emissions. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Effects of the re-entrant bowl geometry on a DI turbocharged diesel engine performance and emissions : a CFD approach [texte imprimé] / S. Pasupathy Venkateswaran, Auteur ; G. Nagarajan, Auteur . - 2011 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 12 (Décembre 2010) . - 10 p.
Mots-clés : Combustion Computational fluid dynamics Diesel engines Diffusion Fuel systems Shapes (structures) Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The purpose of this study is to investigate the influence of re-entrant bowl geometry on both engine performance and combustion efficiency in a direct injection (DI), turbocharged diesel engine for heavy-duty applications. The piston bowl design is one of the most important factors that affect the air–fuel mixing and the subsequent combustion and pollutant formation processes in a DI diesel engine. The bowl geometry and dimensions, such as the pip region, bowl lip area, and toroidal radius, are all known to have an effect on the in-cylinder mixing and combustion processes. Based on the idea of enhancing diffusion combustion at the later stage of the combustion period, three different bowl geometries, namely, bowl 1 (baseline), bowl 2, and bowl 3 were selected and investigated. All the other relevant parameters, namely, compression ratio, maximum diameter of the bowl, squish clearance and injection rate were kept constant. A commercial CFD code STAR-CD was used to model the in-cylinder flows and combustion process, and experimental results of the baseline bowl were used to validate the numerical model. The simulation results show that, bowl 3 enhance the turbulence and hence results in better air-fuel mixing among all three bowls in a DI diesel engine. As a result, the indicated specific fuel consumption and soot emission reduced although the NOx emission is increased owing to better mixing and a faster combustion process. Globally, since the reduction in soot is larger (−46% as regards baseline) than the increase in NOx (+15% as regards baseline), it can be concluded that bowl 3 is the best trade-off between performance and emissions. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]