Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Manish R. Thorat
Documents disponibles écrits par cet auteur
Affiner la recherchePredicted rotordynamic behavior of a labyrinth seal as rotor surface speed approaches mach 1 / Manish R. Thorat in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 11 (Novembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 11 (Novembre 2010) . - 08 p.
Titre : Predicted rotordynamic behavior of a labyrinth seal as rotor surface speed approaches mach 1 Type de document : texte imprimé Auteurs : Manish R. Thorat, Auteur ; Childs, Dara W., Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Aerodynamics Damping Elastic constants Flow instability Mach number Rotors Sealing materials Transfer functions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Prior one-control-volume (1CV) models for rotor-fluid interaction in labyrinth seals produce synchronously reduced (at running speed), frequency-independent stiffness and damping coefficients. The 1CV model, consisting of a leakage equation, a continuity equation, and a circumferential-momentum equation (for each cavity), was stated to be invalid for rotor surface speeds approaching the speed of sound. However, the present results show that while the 1CV fluid-mechanic model continues to be valid, the calculated rotordynamic coefficients become strongly dependent on the rotor's precession frequency. A solution is developed for the reaction-force components for a range of precession frequencies, producing frequency-dependent stiffness and damping coefficients. They can be used to define a Laplace-domain transfer-function model for the reaction-force/rotor-motion components. Calculated results are presented for a simple Jeffcott rotor model acted on by a labyrinth seal. The model's undamped natural frequency is 7.6 krpm. The fluid properties, seal radius Rs, and running speed omega cause the rotor surface velocity Rsomega to equal the speed of sound c0 at omega=58 krpm. Calculated synchronous-response results due to imbalance coincide for the synchronously reduced and the frequency-dependent models. For an inlet preswirl ratio of 0.5, both models predict the same log-dec out to omega[approximate]14.5 krpm. The synchronously reduced model predicts an onset speed of instability (OSI) at 10 krpm, but a return to stability at 48 krpm, with subsequent increases in log-dec out to 70 krpm. The frequency-dependent model predicts an OSI of 10 krpm and no return to stability out to 70 krpm. The frequency-dependent models predict small changes in the rotor's damped natural frequencies. The synchronously reduced model predicts large changes. The stability-analysis results show that a frequency-dependent labyrinth seal model should be used if the rotor surface speed approaches a significant fraction of the speed of sound. For the present example, observable discrepancies arose when Rsomega=0.26c0. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Predicted rotordynamic behavior of a labyrinth seal as rotor surface speed approaches mach 1 [texte imprimé] / Manish R. Thorat, Auteur ; Childs, Dara W., Auteur . - 2011 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 11 (Novembre 2010) . - 08 p.
Mots-clés : Aerodynamics Damping Elastic constants Flow instability Mach number Rotors Sealing materials Transfer functions Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Prior one-control-volume (1CV) models for rotor-fluid interaction in labyrinth seals produce synchronously reduced (at running speed), frequency-independent stiffness and damping coefficients. The 1CV model, consisting of a leakage equation, a continuity equation, and a circumferential-momentum equation (for each cavity), was stated to be invalid for rotor surface speeds approaching the speed of sound. However, the present results show that while the 1CV fluid-mechanic model continues to be valid, the calculated rotordynamic coefficients become strongly dependent on the rotor's precession frequency. A solution is developed for the reaction-force components for a range of precession frequencies, producing frequency-dependent stiffness and damping coefficients. They can be used to define a Laplace-domain transfer-function model for the reaction-force/rotor-motion components. Calculated results are presented for a simple Jeffcott rotor model acted on by a labyrinth seal. The model's undamped natural frequency is 7.6 krpm. The fluid properties, seal radius Rs, and running speed omega cause the rotor surface velocity Rsomega to equal the speed of sound c0 at omega=58 krpm. Calculated synchronous-response results due to imbalance coincide for the synchronously reduced and the frequency-dependent models. For an inlet preswirl ratio of 0.5, both models predict the same log-dec out to omega[approximate]14.5 krpm. The synchronously reduced model predicts an onset speed of instability (OSI) at 10 krpm, but a return to stability at 48 krpm, with subsequent increases in log-dec out to 70 krpm. The frequency-dependent model predicts an OSI of 10 krpm and no return to stability out to 70 krpm. The frequency-dependent models predict small changes in the rotor's damped natural frequencies. The synchronously reduced model predicts large changes. The stability-analysis results show that a frequency-dependent labyrinth seal model should be used if the rotor surface speed approaches a significant fraction of the speed of sound. For the present example, observable discrepancies arose when Rsomega=0.26c0. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]