Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Charles Ahlfeld
Documents disponibles écrits par cet auteur
Affiner la rechercheA once-through fuel cycle for fast reactors / Kevan D. Weaver in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 10 (Octobre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 10 (Octobre 2010) . - 06 p.
Titre : A once-through fuel cycle for fast reactors Type de document : texte imprimé Auteurs : Kevan D. Weaver, Auteur ; John Gilleland, Auteur ; Charles Ahlfeld, Auteur Année de publication : 2011 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Fission reactor fuel Nuclear power Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A paradigm shift has altered the design targets for advanced nuclear energy systems that use a fast neutron spectrum. Whereas designers previously emphasized the ability of fast reactors to extend global reserves of fissile fuels, the overriding desire now is for reactor technologies that are “cleaner, more efficient, less waste-intensive, and more proliferation-resistant.” (Cheney, 2001, “U.S. National Energy Policy,” National Energy Policy Development Group, Washington, DC) This shift in priorities, along with recent design advances that enable high fuel burnup even when using fuels that have been minimally enriched, creates an opportunity to use fast reactors in an open nuclear fuel cycle. One promising route to this goal exploits a phenomenon known as a traveling wave, which can attain high burnups without reprocessing. A traveling-wave reactor (TWR) breeds and uses its own fuel in place as it operates. Recent design work has demonstrated that TWRs could be fueled almost entirely by depleted or natural uranium, thus reducing the need for initial enrichment. The calculations described here show that a gigawatt-scale electric TWR can achieve a burnup of 20%, which is four to five times that realized in current light water reactors. Burnups as high as 50% appear feasible. The factors that contribute to these high burnups and the implications for materials design are discussed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] A once-through fuel cycle for fast reactors [texte imprimé] / Kevan D. Weaver, Auteur ; John Gilleland, Auteur ; Charles Ahlfeld, Auteur . - 2011 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 10 (Octobre 2010) . - 06 p.
Mots-clés : Fission reactor fuel Nuclear power Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A paradigm shift has altered the design targets for advanced nuclear energy systems that use a fast neutron spectrum. Whereas designers previously emphasized the ability of fast reactors to extend global reserves of fissile fuels, the overriding desire now is for reactor technologies that are “cleaner, more efficient, less waste-intensive, and more proliferation-resistant.” (Cheney, 2001, “U.S. National Energy Policy,” National Energy Policy Development Group, Washington, DC) This shift in priorities, along with recent design advances that enable high fuel burnup even when using fuels that have been minimally enriched, creates an opportunity to use fast reactors in an open nuclear fuel cycle. One promising route to this goal exploits a phenomenon known as a traveling wave, which can attain high burnups without reprocessing. A traveling-wave reactor (TWR) breeds and uses its own fuel in place as it operates. Recent design work has demonstrated that TWRs could be fueled almost entirely by depleted or natural uranium, thus reducing the need for initial enrichment. The calculations described here show that a gigawatt-scale electric TWR can achieve a burnup of 20%, which is four to five times that realized in current light water reactors. Burnups as high as 50% appear feasible. The factors that contribute to these high burnups and the implications for materials design are discussed. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]