Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Dalin Zhang
Documents disponibles écrits par cet auteur
Affiner la rechercheStudy on the coupled neutronic and thermal-hydraulic characteristics of the new concept molten salt reactor / Peng Wang in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 10 (Octobre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 10 (Octobre 2010) . - 07 p.
Titre : Study on the coupled neutronic and thermal-hydraulic characteristics of the new concept molten salt reactor Type de document : texte imprimé Auteurs : Peng Wang, Auteur ; Libo Qian, Auteur ; Dalin Zhang, Auteur Année de publication : 2011 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Fission reactor coolants Fission reactor design Fission reactor fuel Neutrons Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The new concept molten salt reactor is the only liquid-fuel reactor of the six Generation IV advanced nuclear energy systems. The liquid molten salt serves as the fuel and coolant simultaneously and causes one important feature: the delayed neutron precursors are drifted by the fuel flow, which leads the spread of delayed neutrons' distribution to noncore parts of the primary circuit, and it also results in reactivity variation depending on the flow condition of the fuel salt. Therefore, the neutronic and thermal-hydraulic characteristics of the molten salt reactor are quite different from the conventional nuclear reactors using solid fissile materials. Besides, there is no other reactor design theory and safety analysis methodologies can be used for reference. The neutronic model is derived based on the conservation of particles considering the flow effect of the fuel salt in the molten salt reactor, while the thermal-hydraulic model applies the fundamental conservation laws: the mass, momentum, and energy conservation equations. Then, the neutronic and thermal-hydraulic calculations are coupled and the influences of inflow temperature and flow velocity on the reactor physical properties are obtained. The calculated results show that the flow effect on the distributions of thermal and fast neutron fluxes is very weak, as well as on the effective multiplication factor keff, while the flow effect on the distribution of delayed neutron precursors is much stronger. The inflow temperature influences the distribution of neutron fluxes and delayed neutron precursors slightly, and makes a significant negative reactivity. Coupled calculation also reveals that the flow velocity of molten salt has little effect on the distribution of neutron fluxes in the steady-state, but affects the delayed neutron precursors' distribution significantly. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Study on the coupled neutronic and thermal-hydraulic characteristics of the new concept molten salt reactor [texte imprimé] / Peng Wang, Auteur ; Libo Qian, Auteur ; Dalin Zhang, Auteur . - 2011 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 10 (Octobre 2010) . - 07 p.
Mots-clés : Fission reactor coolants Fission reactor design Fission reactor fuel Neutrons Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The new concept molten salt reactor is the only liquid-fuel reactor of the six Generation IV advanced nuclear energy systems. The liquid molten salt serves as the fuel and coolant simultaneously and causes one important feature: the delayed neutron precursors are drifted by the fuel flow, which leads the spread of delayed neutrons' distribution to noncore parts of the primary circuit, and it also results in reactivity variation depending on the flow condition of the fuel salt. Therefore, the neutronic and thermal-hydraulic characteristics of the molten salt reactor are quite different from the conventional nuclear reactors using solid fissile materials. Besides, there is no other reactor design theory and safety analysis methodologies can be used for reference. The neutronic model is derived based on the conservation of particles considering the flow effect of the fuel salt in the molten salt reactor, while the thermal-hydraulic model applies the fundamental conservation laws: the mass, momentum, and energy conservation equations. Then, the neutronic and thermal-hydraulic calculations are coupled and the influences of inflow temperature and flow velocity on the reactor physical properties are obtained. The calculated results show that the flow effect on the distributions of thermal and fast neutron fluxes is very weak, as well as on the effective multiplication factor keff, while the flow effect on the distribution of delayed neutron precursors is much stronger. The inflow temperature influences the distribution of neutron fluxes and delayed neutron precursors slightly, and makes a significant negative reactivity. Coupled calculation also reveals that the flow velocity of molten salt has little effect on the distribution of neutron fluxes in the steady-state, but affects the delayed neutron precursors' distribution significantly. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]