Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Hans-Jörg Bauer
Documents disponibles écrits par cet auteur
Affiner la rechercheEffects of pilot fuel and liner cooling on the flame structure in a full scale swirl-stabilized combustion setup / Jens Färber in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 07 p.
Titre : Effects of pilot fuel and liner cooling on the flame structure in a full scale swirl-stabilized combustion setup Type de document : texte imprimé Auteurs : Jens Färber, Auteur ; Rainer Koch, Auteur ; Hans-Jörg Bauer, Auteur Année de publication : 2011 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Combustion Combustion equipment Cooling Doppler measurement Fuel systems Gas turbines Laser velocimetry Swirling flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The flame structure and the limits of operation of a lean premixed swirl flame were experimentally investigated under piloted and nonpiloted conditions. Flame stabilization and blow out limits are discussed with respect to pilot fuel injection and combustor liner cooling for lean operating conditions. Two distinctly different flow patterns are found to develop depending on piloting and liner cooling parameters. These flow patterns are characterized with respect to flame stability, blow out limits, combustion noise, and emissions. The combustion system explored consists of a single burner similar to the burners used in Siemens annular combustion systems. The burner feeds a distinctively nonadiabatic combustion chamber operated with natural gas under atmospheric pressure. Liner cooling is mimicked by purely convective cooling and an additional flow of “leakage air” injected into the combustion chamber. Both additional air flow and the pilot fuel ratio were found to have a strong influence on the flow structure and stability of the flame close to the lean blow off (LBO) limit. It is shown by laser Doppler velocimetry that the angle of the swirl cone is strongly affected by pilot fuel injection. Two distinct types of flow patterns are observed close to LBO in this large scale setup: While nonpiloted flames exhibit tight cone angles and small inner recirculation zones (IRZs), sufficient piloting results in a wide cone angle and a large IRZ. Only in the latter case, the main flow becomes attached to the combustor liner. Flame structures deduced from flow fields and CH-chemiluminescence images depend on both the pilot fuel injection and liner cooling. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Effects of pilot fuel and liner cooling on the flame structure in a full scale swirl-stabilized combustion setup [texte imprimé] / Jens Färber, Auteur ; Rainer Koch, Auteur ; Hans-Jörg Bauer, Auteur . - 2011 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 07 p.
Mots-clés : Combustion Combustion equipment Cooling Doppler measurement Fuel systems Gas turbines Laser velocimetry Swirling flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The flame structure and the limits of operation of a lean premixed swirl flame were experimentally investigated under piloted and nonpiloted conditions. Flame stabilization and blow out limits are discussed with respect to pilot fuel injection and combustor liner cooling for lean operating conditions. Two distinctly different flow patterns are found to develop depending on piloting and liner cooling parameters. These flow patterns are characterized with respect to flame stability, blow out limits, combustion noise, and emissions. The combustion system explored consists of a single burner similar to the burners used in Siemens annular combustion systems. The burner feeds a distinctively nonadiabatic combustion chamber operated with natural gas under atmospheric pressure. Liner cooling is mimicked by purely convective cooling and an additional flow of “leakage air” injected into the combustion chamber. Both additional air flow and the pilot fuel ratio were found to have a strong influence on the flow structure and stability of the flame close to the lean blow off (LBO) limit. It is shown by laser Doppler velocimetry that the angle of the swirl cone is strongly affected by pilot fuel injection. Two distinct types of flow patterns are observed close to LBO in this large scale setup: While nonpiloted flames exhibit tight cone angles and small inner recirculation zones (IRZs), sufficient piloting results in a wide cone angle and a large IRZ. Only in the latter case, the main flow becomes attached to the combustor liner. Flame structures deduced from flow fields and CH-chemiluminescence images depend on both the pilot fuel injection and liner cooling. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Reliable and accurate prediction of three-dimensional separation in asymmetric diffusers using large-Eddy simulation / Hayder Schneider in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 3 (Mars 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 3 (Mars 2010) . - 07 p.
Titre : Reliable and accurate prediction of three-dimensional separation in asymmetric diffusers using large-Eddy simulation Type de document : texte imprimé Auteurs : Hayder Schneider, Auteur ; Dominic von Terzi, Auteur ; Hans-Jörg Bauer, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : asymmetric three-dimensional diffusers; large-eddy simulations Résumé : Large-eddy simulations (LES) and Reynolds-averaged Navier–Stokes (RANS) calculations of the flow in two asymmetric three-dimensional diffusers were performed. The setup was chosen to match an existing experiment with separation. Both diffusers possess the same expansion ratio but differ in performance. The aim of the present study is to find the least expensive method to reliably and with reasonable accuracy account for the impact of the change in geometry. RANS calculations failed to predict both the extent and location of the separation. In contrast, LES with wall-functions delivered results within the accuracy of the experimental data. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Reliable and accurate prediction of three-dimensional separation in asymmetric diffusers using large-Eddy simulation [texte imprimé] / Hayder Schneider, Auteur ; Dominic von Terzi, Auteur ; Hans-Jörg Bauer, Auteur . - 2010 . - 07 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 3 (Mars 2010) . - 07 p.
Mots-clés : asymmetric three-dimensional diffusers; large-eddy simulations Résumé : Large-eddy simulations (LES) and Reynolds-averaged Navier–Stokes (RANS) calculations of the flow in two asymmetric three-dimensional diffusers were performed. The setup was chosen to match an existing experiment with separation. Both diffusers possess the same expansion ratio but differ in performance. The aim of the present study is to find the least expensive method to reliably and with reasonable accuracy account for the impact of the change in geometry. RANS calculations failed to predict both the extent and location of the separation. In contrast, LES with wall-functions delivered results within the accuracy of the experimental data. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]