Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Marc P. Mignolet
Documents disponibles écrits par cet auteur
Affiner la rechercheNonparametric stochastic modeling of uncertainty in rotordynamics / Raghavendra Murthy in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 07 p.
Titre : Nonparametric stochastic modeling of uncertainty in rotordynamics : part I: formulation Type de document : texte imprimé Auteurs : Raghavendra Murthy, Auteur ; Marc P. Mignolet, Auteur ; Aly El-Shafei, Auteur Année de publication : 2011 Article en page(s) : 07 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Damping Elastic constants Machine bearings Matrix algebra Rotors Stochastic processes Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A systematic and rational approach is presented for the consideration of uncertainty in rotordynamics systems, i.e., in rotor mass and gyroscopic matrices, stiffness matrix, and bearing coefficients. The approach is based on the nonparametric stochastic modeling technique, which permits the consideration of both data and modeling uncertainty. The former is induced by a lack of exact knowledge of properties such as density, Young's modulus, etc. The latter occurs in the generation of the computational model from the physical structure as some of its features are invariably ignored, e.g., small anisotropies, or approximately represented, e.g., detailed meshing of gears. The nonparametric stochastic modeling approach, which is briefly reviewed first, introduces uncertainty in reduced order models through the randomization of their system matrices (e.g., stiffness, mass, and damping matrices of nonrotating structural dynamic systems). Here, this methodology is extended to permit the consideration of uncertainty in symmetric and asymmetric rotor dynamic systems. More specifically, uncertainties on the rotor stiffness (stiffness matrix) and/or mass properties (mass and gyroscopic matrices) are first introduced that maintain the symmetry of the rotor. The generalization of these concepts to uncertainty in the bearing coefficients is achieved next. Finally, the consideration of uncertainty in asymmetric rotors is described in detail. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Nonparametric stochastic modeling of uncertainty in rotordynamics : part I: formulation [texte imprimé] / Raghavendra Murthy, Auteur ; Marc P. Mignolet, Auteur ; Aly El-Shafei, Auteur . - 2011 . - 07 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 07 p.
Mots-clés : Damping Elastic constants Machine bearings Matrix algebra Rotors Stochastic processes Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A systematic and rational approach is presented for the consideration of uncertainty in rotordynamics systems, i.e., in rotor mass and gyroscopic matrices, stiffness matrix, and bearing coefficients. The approach is based on the nonparametric stochastic modeling technique, which permits the consideration of both data and modeling uncertainty. The former is induced by a lack of exact knowledge of properties such as density, Young's modulus, etc. The latter occurs in the generation of the computational model from the physical structure as some of its features are invariably ignored, e.g., small anisotropies, or approximately represented, e.g., detailed meshing of gears. The nonparametric stochastic modeling approach, which is briefly reviewed first, introduces uncertainty in reduced order models through the randomization of their system matrices (e.g., stiffness, mass, and damping matrices of nonrotating structural dynamic systems). Here, this methodology is extended to permit the consideration of uncertainty in symmetric and asymmetric rotor dynamic systems. More specifically, uncertainties on the rotor stiffness (stiffness matrix) and/or mass properties (mass and gyroscopic matrices) are first introduced that maintain the symmetry of the rotor. The generalization of these concepts to uncertainty in the bearing coefficients is achieved next. Finally, the consideration of uncertainty in asymmetric rotors is described in detail. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] Nonparametric stochastic modeling of uncertainty in rotordynamics / Raghavendra Murthy in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 11 p.
Titre : Nonparametric stochastic modeling of uncertainty in rotordynamics : part II: applications Type de document : texte imprimé Auteurs : Raghavendra Murthy, Auteur ; Marc P. Mignolet, Auteur ; Aly El-Shafei, Auteur Année de publication : 2011 Article en page(s) : 11 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Eigenvalues and eigenfunctions Machine bearings Rotors Stochastic processes Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the first part of this series, a comprehensive methodology was proposed for the consideration of uncertainty in rotordynamic systems. This second part focuses on the application of this approach to a simple, yet representative, symmetric rotor supported by two journal bearings exhibiting linear, asymmetric properties. The effects of uncertainty in rotor properties (i.e., mass, gyroscopic, and stiffness matrices) that maintain the symmetry of the rotor are first considered. The parameter lambda that specifies the level of uncertainty in the simulation of stiffness and mass uncertain properties (the latter with algorithm I) is obtained by imposing a standard deviation of the first nonzero natural frequency of the free nonrotating rotor. Then, the effects of these uncertainties on the Campbell diagram, eigenvalues and eigenvectors of the rotating rotor on its bearings, forced unbalance response, and oil whip instability threshold are predicted and discussed. A similar effort is also carried out for uncertainties in the bearing stiffness and damping matrices. Next, uncertainties that violate the asymmetry of the present rotor are considered to exemplify the simulation of uncertain asymmetric rotors. A comparison of the effects of symmetric and asymmetric uncertainties on the eigenvalues and eigenvectors of the rotating rotor on symmetric bearings is finally performed to provide a first perspective on the importance of uncertainty-born asymmetry in the response of rotordynamic systems. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Nonparametric stochastic modeling of uncertainty in rotordynamics : part II: applications [texte imprimé] / Raghavendra Murthy, Auteur ; Marc P. Mignolet, Auteur ; Aly El-Shafei, Auteur . - 2011 . - 11 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 11 p.
Mots-clés : Eigenvalues and eigenfunctions Machine bearings Rotors Stochastic processes Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : In the first part of this series, a comprehensive methodology was proposed for the consideration of uncertainty in rotordynamic systems. This second part focuses on the application of this approach to a simple, yet representative, symmetric rotor supported by two journal bearings exhibiting linear, asymmetric properties. The effects of uncertainty in rotor properties (i.e., mass, gyroscopic, and stiffness matrices) that maintain the symmetry of the rotor are first considered. The parameter lambda that specifies the level of uncertainty in the simulation of stiffness and mass uncertain properties (the latter with algorithm I) is obtained by imposing a standard deviation of the first nonzero natural frequency of the free nonrotating rotor. Then, the effects of these uncertainties on the Campbell diagram, eigenvalues and eigenvectors of the rotating rotor on its bearings, forced unbalance response, and oil whip instability threshold are predicted and discussed. A similar effort is also carried out for uncertainties in the bearing stiffness and damping matrices. Next, uncertainties that violate the asymmetry of the present rotor are considered to exemplify the simulation of uncertain asymmetric rotors. A comparison of the effects of symmetric and asymmetric uncertainties on the eigenvalues and eigenvectors of the rotating rotor on symmetric bearings is finally performed to provide a first perspective on the importance of uncertainty-born asymmetry in the response of rotordynamic systems. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] On damping entire bladed disks through dampers on only a few blades / Javier Avalos in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 10 p.
Titre : On damping entire bladed disks through dampers on only a few blades Type de document : texte imprimé Auteurs : Javier Avalos, Auteur ; Marc P. Mignolet, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Damping Discs (structures) Reduced order systems Shock absorbers Turbomachinery Vibration control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning, and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient, and the optimum bladed disk design does indeed exhibit a significant reduction in mistuned forced response as compared with the tuned system. These findings were obtained on both single-degree-of-freedom per blade-disk models and a reduced order model of a blisk. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] On damping entire bladed disks through dampers on only a few blades [texte imprimé] / Javier Avalos, Auteur ; Marc P. Mignolet, Auteur . - 2011 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 10 p.
Mots-clés : Blades Damping Discs (structures) Reduced order systems Shock absorbers Turbomachinery Vibration control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning, and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient, and the optimum bladed disk design does indeed exhibit a significant reduction in mistuned forced response as compared with the tuned system. These findings were obtained on both single-degree-of-freedom per blade-disk models and a reduced order model of a blisk. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]