Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Javier Avalos
Documents disponibles écrits par cet auteur
Affiner la rechercheOn damping entire bladed disks through dampers on only a few blades / Javier Avalos in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 10 p.
Titre : On damping entire bladed disks through dampers on only a few blades Type de document : texte imprimé Auteurs : Javier Avalos, Auteur ; Marc P. Mignolet, Auteur Année de publication : 2011 Article en page(s) : 10 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Blades Damping Discs (structures) Reduced order systems Shock absorbers Turbomachinery Vibration control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning, and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient, and the optimum bladed disk design does indeed exhibit a significant reduction in mistuned forced response as compared with the tuned system. These findings were obtained on both single-degree-of-freedom per blade-disk models and a reduced order model of a blisk. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] On damping entire bladed disks through dampers on only a few blades [texte imprimé] / Javier Avalos, Auteur ; Marc P. Mignolet, Auteur . - 2011 . - 10 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 10 p.
Mots-clés : Blades Damping Discs (structures) Reduced order systems Shock absorbers Turbomachinery Vibration control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The focus of this paper is on demonstrating the potential to damp entire bladed disks using dampers on only a fraction of the blades. This problem is first considered without the presence of random mistuning, and it is demonstrated that a few dampers at optimized locations can lead to a significant reduction in the forced response of the entire bladed disk. Unfortunately, this optimum design may not be robust with respect to random mistuning and a notable fraction of the reduction in forced response obtained may disappear because of mistuning. To regain the reduction in forced response but with mistuning present, robustness to mistuning is enhanced by using intentional mistuning in addition to dampers. The intentional mistuning strategy selected here is the A/B pattern mistuning in which the blades all belong to either type A or B. An optimization effort is then performed to obtain the best combination of A/B pattern and damper location to minimize the mistuned forced response of the disk. The addition of intentional mistuning in the system is shown to be very efficient, and the optimum bladed disk design does indeed exhibit a significant reduction in mistuned forced response as compared with the tuned system. These findings were obtained on both single-degree-of-freedom per blade-disk models and a reduced order model of a blisk. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]