Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur B. R. Petersen
Documents disponibles écrits par cet auteur
Affiner la rechercheHigh-resolution scalar and velocity measurements in an internal combustion engine / B. R. Petersen in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 06 p.
Titre : High-resolution scalar and velocity measurements in an internal combustion engine Type de document : texte imprimé Auteurs : B. R. Petersen, Auteur ; D. M. Heim, Auteur ; J. B. Ghandhi, Auteur Année de publication : 2011 Article en page(s) : 06 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Flow visualisation Fluorescence spectroscopy Internal combustion engines Turbulence Velocity measurement Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : High-resolution planar laser-induced fluorescence and particle image velocimetry (PIV) measurements were acquired during the intake stroke in a motored engine to investigate the mixing behavior of in-cylinder flows. The data were analyzed to determine the scalar energy and kinetic energy spectra, which were used to find the corresponding dissipation spectra. The results were compared with a model turbulent spectrum. The scalar energy and scalar dissipation spectra were shown to be resolved through the full dissipation range, enabling the determination of the Batchelor/Kolmogorov length scale and agreed well with the model turbulent spectrum at all but the highest wavenumbers where the effects of random noise were present. The 2% point in the scalar dissipation spectra was used to estimate the Batchelor scale, which was found to be approximately 32 µm. The PIV data, which had a 675 µm interrogation region, were used to calculate a one-dimensional kinetic energy spectrum. The kinetic energy spectrum agreed well with the scalar energy spectrum and the model spectrum up to wavenumbers corresponding to approximately two times the PIV interrogation region size. For the present measurements, this meant that the PIV data were not able to resolve the peak in the dissipation spectrum, i.e., the full high-wavenumber part of the inertial subrange. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] High-resolution scalar and velocity measurements in an internal combustion engine [texte imprimé] / B. R. Petersen, Auteur ; D. M. Heim, Auteur ; J. B. Ghandhi, Auteur . - 2011 . - 06 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 9 (Septembre 2010) . - 06 p.
Mots-clés : Flow visualisation Fluorescence spectroscopy Internal combustion engines Turbulence Velocity measurement Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : High-resolution planar laser-induced fluorescence and particle image velocimetry (PIV) measurements were acquired during the intake stroke in a motored engine to investigate the mixing behavior of in-cylinder flows. The data were analyzed to determine the scalar energy and kinetic energy spectra, which were used to find the corresponding dissipation spectra. The results were compared with a model turbulent spectrum. The scalar energy and scalar dissipation spectra were shown to be resolved through the full dissipation range, enabling the determination of the Batchelor/Kolmogorov length scale and agreed well with the model turbulent spectrum at all but the highest wavenumbers where the effects of random noise were present. The 2% point in the scalar dissipation spectra was used to estimate the Batchelor scale, which was found to be approximately 32 µm. The PIV data, which had a 675 µm interrogation region, were used to calculate a one-dimensional kinetic energy spectrum. The kinetic energy spectrum agreed well with the scalar energy spectrum and the model spectrum up to wavenumbers corresponding to approximately two times the PIV interrogation region size. For the present measurements, this meant that the PIV data were not able to resolve the peak in the dissipation spectrum, i.e., the full high-wavenumber part of the inertial subrange. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]