Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur A. Kumar
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling impregnated layer combustion synthesis of catalyts for hydrogen generation from oxidative reforming of methanol / A. Kumar in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 11001-11008
Titre : Modeling impregnated layer combustion synthesis of catalyts for hydrogen generation from oxidative reforming of methanol Type de document : texte imprimé Auteurs : A. Kumar, Auteur ; A. S. Mukasyan, Auteur ; E. E. Wolf, Auteur Année de publication : 2011 Article en page(s) : pp. 11001-11008 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Reforming Oxidation Hydrogen production Combustion Modeling Résumé : A novel method for catalyst preparation using combustion synthesis techniques has been used to prepare Cu/Zn/Zr and Pd-based catalysts for oxidative reforming of methanol. Spatially resolved infrared thermography has been used to follow the temperature-time movement of the combustion front on cellulose paper impregnated with the catalyst precursor solution along with other techniques to follow the systematic evolution of the catalyst particles from the initial reactants mixture. These particles have been characterized by their activity/selectivity for methanol oxidation/hydrogen production, BET area, and dispersion of Pd on the surface. Results obtained show that they are extremely active and selective in the low temperature range. A one-dimensional theoretical model is presented that describe the main parameters involved in the front propagation. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447995 [article] Modeling impregnated layer combustion synthesis of catalyts for hydrogen generation from oxidative reforming of methanol [texte imprimé] / A. Kumar, Auteur ; A. S. Mukasyan, Auteur ; E. E. Wolf, Auteur . - 2011 . - pp. 11001-11008.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp. 11001-11008
Mots-clés : Reforming Oxidation Hydrogen production Combustion Modeling Résumé : A novel method for catalyst preparation using combustion synthesis techniques has been used to prepare Cu/Zn/Zr and Pd-based catalysts for oxidative reforming of methanol. Spatially resolved infrared thermography has been used to follow the temperature-time movement of the combustion front on cellulose paper impregnated with the catalyst precursor solution along with other techniques to follow the systematic evolution of the catalyst particles from the initial reactants mixture. These particles have been characterized by their activity/selectivity for methanol oxidation/hydrogen production, BET area, and dispersion of Pd on the surface. Results obtained show that they are extremely active and selective in the low temperature range. A one-dimensional theoretical model is presented that describe the main parameters involved in the front propagation. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23447995 Simulation of cooling of liquid Al–33 wt.% Cu droplet impinging on a metallic substrate and its experimental validation / A. Kumar in Acta materialia, Vol. 58 N° 1 (Janvier 2010)
[article]
in Acta materialia > Vol. 58 N° 1 (Janvier 2010) . - pp. 122–133
Titre : Simulation of cooling of liquid Al–33 wt.% Cu droplet impinging on a metallic substrate and its experimental validation Type de document : texte imprimé Auteurs : A. Kumar, Auteur ; S. Ghosh, Auteur ; B. K. Dhindaw, Auteur Année de publication : 2010 Article en page(s) : pp. 122–133 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Eutectic Alloy droplet Substrate Solidification Modeling Résumé : In the present work a model for heat transfer during collision of a falling liquid Al–33 wt.% Cu droplet on a 304 stainless steel substrate has been developed on a FLUENT 6.3.16 platform. The model simultaneously takes into account the fluid flow and heat transfer in the liquid droplet and the surrounding gas, and the heat transfer in the substrate. The liquid–gas interface was tracked using the volume of fluid method and the contact resistance between Al–33 wt.% Cu and the substrate was taken into account. The comprehensive model correctly predicted the total spread in the droplet. As per the predicted transient thermal field, the solidification front speed oscillated along the radius of the spread droplet. Based on the estimated front speeds at these locations and Jackson–Hunt plot for Al–33 wt.% Cu, the variation of interlamellar spacing along the radial direction was found. It matched well with the variation of the experimentally measured interlamellar spacing at different locations along the radius. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409005862 [article] Simulation of cooling of liquid Al–33 wt.% Cu droplet impinging on a metallic substrate and its experimental validation [texte imprimé] / A. Kumar, Auteur ; S. Ghosh, Auteur ; B. K. Dhindaw, Auteur . - 2010 . - pp. 122–133.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 1 (Janvier 2010) . - pp. 122–133
Mots-clés : Eutectic Alloy droplet Substrate Solidification Modeling Résumé : In the present work a model for heat transfer during collision of a falling liquid Al–33 wt.% Cu droplet on a 304 stainless steel substrate has been developed on a FLUENT 6.3.16 platform. The model simultaneously takes into account the fluid flow and heat transfer in the liquid droplet and the surrounding gas, and the heat transfer in the substrate. The liquid–gas interface was tracked using the volume of fluid method and the contact resistance between Al–33 wt.% Cu and the substrate was taken into account. The comprehensive model correctly predicted the total spread in the droplet. As per the predicted transient thermal field, the solidification front speed oscillated along the radius of the spread droplet. Based on the estimated front speeds at these locations and Jackson–Hunt plot for Al–33 wt.% Cu, the variation of interlamellar spacing along the radial direction was found. It matched well with the variation of the experimentally measured interlamellar spacing at different locations along the radius. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409005862