Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Matthew Neurock
Documents disponibles écrits par cet auteur
Affiner la rechercheEngineering molecular transformations for sustainable energy conversion / Matthew Neurock in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp 10183–10199
Titre : Engineering molecular transformations for sustainable energy conversion Type de document : texte imprimé Auteurs : Matthew Neurock, Auteur Année de publication : 2011 Article en page(s) : pp 10183–10199 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Energy Molecular Conversion Résumé : Future strategies for sustainable energy production will undoubtedly require processes and materials that can efficiently convert renewable resources into fuels. Nature’s enzymes can exquisitely integrate highly active catalytic centers within flexible environments that can adaptively guide reactants to products with very high activities and selectivities. They are limited, however, by their stability and ability to integrate into large scale production processes. The design of more robust heterogeneous catalytic materials that mimic the performance of enzymes, however, has been hindered by our limited understanding of how such transformations proceed. The tremendous advances in ab initio quantum mechanical methods, atomistic simulations, and high performance computing that have occurred over the past two decades, however, provide unprecedented ability to track molecular transformations and how they proceed at specific sites and within particular environments. This information together with the advances in in situ spectroscopic methods that follow such transformations can begin to enable the design of atomic surface ensembles and nanoscale reaction environments. This paper provides the author’s perspective on how theory and simulation can be used to move from current one-dimensional design efforts based on catalytic descriptors to the design of two-dimensional surfaces, three-dimensional reaction environments, and proton-coupled electron transfer systems that mimic enzymes in the transformation of molecules. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie101300c [article] Engineering molecular transformations for sustainable energy conversion [texte imprimé] / Matthew Neurock, Auteur . - 2011 . - pp 10183–10199.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp 10183–10199
Mots-clés : Energy Molecular Conversion Résumé : Future strategies for sustainable energy production will undoubtedly require processes and materials that can efficiently convert renewable resources into fuels. Nature’s enzymes can exquisitely integrate highly active catalytic centers within flexible environments that can adaptively guide reactants to products with very high activities and selectivities. They are limited, however, by their stability and ability to integrate into large scale production processes. The design of more robust heterogeneous catalytic materials that mimic the performance of enzymes, however, has been hindered by our limited understanding of how such transformations proceed. The tremendous advances in ab initio quantum mechanical methods, atomistic simulations, and high performance computing that have occurred over the past two decades, however, provide unprecedented ability to track molecular transformations and how they proceed at specific sites and within particular environments. This information together with the advances in in situ spectroscopic methods that follow such transformations can begin to enable the design of atomic surface ensembles and nanoscale reaction environments. This paper provides the author’s perspective on how theory and simulation can be used to move from current one-dimensional design efforts based on catalytic descriptors to the design of two-dimensional surfaces, three-dimensional reaction environments, and proton-coupled electron transfer systems that mimic enzymes in the transformation of molecules. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie101300c First - principles - based kinetic monte carlo simulation of nitric oxide reduction over platinum nanoparticles under lean - burn conditions / Donghai Mei in Industrial & engineering chemistry research, Vol. 49 N° 21 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp.10364-10373
Titre : First - principles - based kinetic monte carlo simulation of nitric oxide reduction over platinum nanoparticles under lean - burn conditions Type de document : texte imprimé Auteurs : Donghai Mei, Auteur ; Jincheng Du, Auteur ; Matthew Neurock, Auteur Année de publication : 2011 Article en page(s) : pp.10364-10373 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Kinetic Oxide Nanoparticles Résumé : This article discusses first-principles-based kinetic Monte Carlo simulation of Nitric Oxide reduction. The kinetics for NO reduction over supported platinum under lean condition were investigated by first-principles-based kinetic Monte Carlo simulation over three-dimensional Pt nanoparticles. Model platinum nanoparticles with diameters ranging from 2.3 to 4.6 nm were constructed using a truncated octahedral cluster consisting of a two (100) facets and eight (111) facets. First-principles density functional theory (DFT) calculations were used to calculate the intrinsic kinetic parameters including the binding energies for all of the surface intermediates as well as the activation barriers and reaction energies that comprise the reaction nanoparticle. Both intra- and inter-facet diffusion of adsorbates were included to model surface diffusion effects over the particle surface. The simulation results show that under lean conditions where there is excess oxygen, NO reduction to N2 occurs solely on the (100) facets. The oxidation of NO to NO2, while much more favored on the (111) facets, can occur on both (100) and (111) facets. Only small amounts of N2O form over the (100) facets. The simulated apparent activation energies for N2 and NO2 formation over the entire particle are 45 and 42 kJ/mol, respectively. The latter is in agreement with experimentally measured value of 39 kJ/mol [Mulla, S.S., et al., Catal. Lett. 2005, 100, 267]. The effects of particle size on the activities of NO reduction to N2 and NO oxidation to NO2 depend upon the ratios of exposed surface sites. For the three-dimensional model Pt nanoparticles examined here, the fractions of the (100) terrace sites are similar while the fraction of the (111) terrace sites increases with increasing particle size. As a result, the activity for NO reduction is somewhat insensitive to the particle size which symmetrically increases the numbers of (111) and (100) facets as the size increases. NO reduction, however, increases much more dramatically when the number of the (100) sites increases over the (111) sites. NO oxidation activity, on the other hand, appears to increase with increasing particle size regardless of the symmetry or shape of the particle as the reaction occurs predominantly over the (111) sites but can also take place on the (100) terrace sites. The structure insensitivity for NO oxidation is consistent with experimental results. ISSN : 0888-5885 En ligne : http://digital.library.unt.edu/ark:/67531/metadc71804/ [article] First - principles - based kinetic monte carlo simulation of nitric oxide reduction over platinum nanoparticles under lean - burn conditions [texte imprimé] / Donghai Mei, Auteur ; Jincheng Du, Auteur ; Matthew Neurock, Auteur . - 2011 . - pp.10364-10373.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 21 (Novembre 2010) . - pp.10364-10373
Mots-clés : Kinetic Oxide Nanoparticles Résumé : This article discusses first-principles-based kinetic Monte Carlo simulation of Nitric Oxide reduction. The kinetics for NO reduction over supported platinum under lean condition were investigated by first-principles-based kinetic Monte Carlo simulation over three-dimensional Pt nanoparticles. Model platinum nanoparticles with diameters ranging from 2.3 to 4.6 nm were constructed using a truncated octahedral cluster consisting of a two (100) facets and eight (111) facets. First-principles density functional theory (DFT) calculations were used to calculate the intrinsic kinetic parameters including the binding energies for all of the surface intermediates as well as the activation barriers and reaction energies that comprise the reaction nanoparticle. Both intra- and inter-facet diffusion of adsorbates were included to model surface diffusion effects over the particle surface. The simulation results show that under lean conditions where there is excess oxygen, NO reduction to N2 occurs solely on the (100) facets. The oxidation of NO to NO2, while much more favored on the (111) facets, can occur on both (100) and (111) facets. Only small amounts of N2O form over the (100) facets. The simulated apparent activation energies for N2 and NO2 formation over the entire particle are 45 and 42 kJ/mol, respectively. The latter is in agreement with experimentally measured value of 39 kJ/mol [Mulla, S.S., et al., Catal. Lett. 2005, 100, 267]. The effects of particle size on the activities of NO reduction to N2 and NO oxidation to NO2 depend upon the ratios of exposed surface sites. For the three-dimensional model Pt nanoparticles examined here, the fractions of the (100) terrace sites are similar while the fraction of the (111) terrace sites increases with increasing particle size. As a result, the activity for NO reduction is somewhat insensitive to the particle size which symmetrically increases the numbers of (111) and (100) facets as the size increases. NO reduction, however, increases much more dramatically when the number of the (100) sites increases over the (111) sites. NO oxidation activity, on the other hand, appears to increase with increasing particle size regardless of the symmetry or shape of the particle as the reaction occurs predominantly over the (111) sites but can also take place on the (100) terrace sites. The structure insensitivity for NO oxidation is consistent with experimental results. ISSN : 0888-5885 En ligne : http://digital.library.unt.edu/ark:/67531/metadc71804/