Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Wolfgang Mohr
Documents disponibles écrits par cet auteur
Affiner la rechercheOptical transfer function measurements for technically premixed flames / Bruno Schuermans in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 8 (Août 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 8 (Août 2010) . - 08 p.
Titre : Optical transfer function measurements for technically premixed flames Type de document : texte imprimé Auteurs : Bruno Schuermans, Auteur ; Felix Guethe, Auteur ; Wolfgang Mohr, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Acoustic measurement Chemiluminescence Combustion Flames Gas turbines Heat transfer Matrix algebra Optical transfer function Thermoacoustics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper deals with a novel approach for measuring thermoacoustic transfer functions. These transfer functions are essential to predict the acoustic behavior of gas turbine combustion systems. Thermoacoustic prediction has become an essential step in the development process of low NOx combustion systems. The proposed method is particularly useful in harsh environments. It makes use of simultaneous measurement of the chemiluminescence of different species in order to obtain the heat release fluctuations via inverse method. Generally, the heat release fluctuation has two contributions: one due to equivalence ratio fluctuations, and the other due to modulations of mass flow of mixture entering the reaction zone. Because the chemiluminescence of one single species depends differently on the two contributions, it is not possible to quantitatively estimate the heat based on this information. Measurement of the transfer matrix based on a purely acoustic method provides quantitative results, independent of the nature of the interaction mechanism. However, this method is difficult to apply in industrial full-scale experiments. The method developed in this work uses the chemiluminescence time traces of several species. After calibration, an overdetermined inverse method is used to calculate the two heat release contributions from the time traces. The optical method proposed here has the advantage that it does not only provide quantitative heat release fluctuations but it also quantifies the underlying physical mechanisms that cause the heat release fluctuations: It shows what part of the heat release is caused by equivalence ratio fluctuations and what part by flame front dynamics. The method was tested on a full scale swirl-stabilized gas turbine burner. Comparison with a purely acoustic method validated the concept. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Optical transfer function measurements for technically premixed flames [texte imprimé] / Bruno Schuermans, Auteur ; Felix Guethe, Auteur ; Wolfgang Mohr, Auteur . - 2011 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 8 (Août 2010) . - 08 p.
Mots-clés : Acoustic measurement Chemiluminescence Combustion Flames Gas turbines Heat transfer Matrix algebra Optical transfer function Thermoacoustics Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper deals with a novel approach for measuring thermoacoustic transfer functions. These transfer functions are essential to predict the acoustic behavior of gas turbine combustion systems. Thermoacoustic prediction has become an essential step in the development process of low NOx combustion systems. The proposed method is particularly useful in harsh environments. It makes use of simultaneous measurement of the chemiluminescence of different species in order to obtain the heat release fluctuations via inverse method. Generally, the heat release fluctuation has two contributions: one due to equivalence ratio fluctuations, and the other due to modulations of mass flow of mixture entering the reaction zone. Because the chemiluminescence of one single species depends differently on the two contributions, it is not possible to quantitatively estimate the heat based on this information. Measurement of the transfer matrix based on a purely acoustic method provides quantitative results, independent of the nature of the interaction mechanism. However, this method is difficult to apply in industrial full-scale experiments. The method developed in this work uses the chemiluminescence time traces of several species. After calibration, an overdetermined inverse method is used to calculate the two heat release contributions from the time traces. The optical method proposed here has the advantage that it does not only provide quantitative heat release fluctuations but it also quantifies the underlying physical mechanisms that cause the heat release fluctuations: It shows what part of the heat release is caused by equivalence ratio fluctuations and what part by flame front dynamics. The method was tested on a full scale swirl-stabilized gas turbine burner. Comparison with a purely acoustic method validated the concept. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]