Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jun Ishimoto
Documents disponibles écrits par cet auteur
Affiner la rechercheComputational prediction of the effect of microcavitation on an atomization mechanism in a gasoline injector nozzle / Jun Ishimoto in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 8 (Août 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 8 (Août 2010) . - 15 p.
Titre : Computational prediction of the effect of microcavitation on an atomization mechanism in a gasoline injector nozzle Type de document : texte imprimé Auteurs : Jun Ishimoto, Auteur ; Fuminori Sato, Auteur ; Gaku Sato, Auteur Année de publication : 2011 Article en page(s) : 15 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Automobile industry Automotive components Cavitation Computational fluid dynamics Drops Flow instability Fuel systems Hydrodynamics Internal combustion engines Nozzles Petroleum Shear turbulence Two-phase flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The effect of microcavitation on the 3D structure of the liquid atomization process in a gasoline injector nozzle was numerically investigated and visualized by a new integrated computational fluid dynamics (CFD) technique for application in the automobile industry. The present CFD analysis focused on the primary breakup phenomenon of liquid atomization which is closely related to microcavitation, the consecutive formation of liquid film, and the generation of droplets by a lateral flow in the outlet section of the nozzle. Governing equations for a high-speed lateral atomizing injector nozzle flow taking into account the microcavitation generation based on the barotropic large eddy simulation-volume of fluid model in conjunction with the continuum surface force model were developed, and then an integrated parallel computation was performed to clarify the detailed atomization process coincident with the microcavitation of a high-speed nozzle flow. Furthermore, data on such factors as the volume fraction of microcavities, atomization length, liquid core shapes, droplet-size distribution, spray angle, and droplet velocity profiles, which are difficult to confirm by experiment, were acquired. According to the present analysis, the atomization rate and the droplets-gas atomizing flow characteristics were found to be controlled by the generation of microcavitation coincident with the primary breakup caused by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, and shear stresses between the liquid core and periphery of the jet. Furthermore, it was found that the energy of vorticity close to the gas-liquid interface was converted to energy for microcavity generation or droplet atomization. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] Computational prediction of the effect of microcavitation on an atomization mechanism in a gasoline injector nozzle [texte imprimé] / Jun Ishimoto, Auteur ; Fuminori Sato, Auteur ; Gaku Sato, Auteur . - 2011 . - 15 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 8 (Août 2010) . - 15 p.
Mots-clés : Automobile industry Automotive components Cavitation Computational fluid dynamics Drops Flow instability Fuel systems Hydrodynamics Internal combustion engines Nozzles Petroleum Shear turbulence Two-phase flow Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The effect of microcavitation on the 3D structure of the liquid atomization process in a gasoline injector nozzle was numerically investigated and visualized by a new integrated computational fluid dynamics (CFD) technique for application in the automobile industry. The present CFD analysis focused on the primary breakup phenomenon of liquid atomization which is closely related to microcavitation, the consecutive formation of liquid film, and the generation of droplets by a lateral flow in the outlet section of the nozzle. Governing equations for a high-speed lateral atomizing injector nozzle flow taking into account the microcavitation generation based on the barotropic large eddy simulation-volume of fluid model in conjunction with the continuum surface force model were developed, and then an integrated parallel computation was performed to clarify the detailed atomization process coincident with the microcavitation of a high-speed nozzle flow. Furthermore, data on such factors as the volume fraction of microcavities, atomization length, liquid core shapes, droplet-size distribution, spray angle, and droplet velocity profiles, which are difficult to confirm by experiment, were acquired. According to the present analysis, the atomization rate and the droplets-gas atomizing flow characteristics were found to be controlled by the generation of microcavitation coincident with the primary breakup caused by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, and shear stresses between the liquid core and periphery of the jet. Furthermore, it was found that the energy of vorticity close to the gas-liquid interface was converted to energy for microcavity generation or droplet atomization. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...]