Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur C.Q. Chen
Documents disponibles écrits par cet auteur
Affiner la rechercheEffects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments / C.Q. Chen in Acta materialia, Vol. 58 N° 1 (Janvier 2010)
[article]
in Acta materialia > Vol. 58 N° 1 (Janvier 2010) . - pp. 189–200
Titre : Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments Type de document : texte imprimé Auteurs : C.Q. Chen, Auteur ; Y.T. Pei, Auteur ; J.T.M. De Hosson, Auteur Année de publication : 2010 Article en page(s) : pp. 189–200 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Transmission electron microscopy (TEM) Amorphous metals Mechanical properties Résumé : Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 nm, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by inhomogeneous shear banding. However, the individual shear banding events are strongly size-dependent, i.e. in larger pillars the deformation is controlled by nucleation of shear bands, but in smaller pillars it becomes propagation-controlled. On the other hand, the yield stress is essentially size-independent. Microbending tests show further advantages by amplifying size effects and minimizing artifacts. An interesting finding is that by microbending, a switch from highly inhomogeneous to fully homogeneous deformation is observed at an experimentally accessible size regime near 200 nm, whereas it is not accessible under microcompression, even at a sub-100 nm scale. These size effects are well interpreted by a micromechanical model, leading to a deformation map in the stress-size space. A physical picture of nanoscale shear localization process is also provided. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409005928 [article] Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments [texte imprimé] / C.Q. Chen, Auteur ; Y.T. Pei, Auteur ; J.T.M. De Hosson, Auteur . - 2010 . - pp. 189–200.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 1 (Janvier 2010) . - pp. 189–200
Mots-clés : Transmission electron microscopy (TEM) Amorphous metals Mechanical properties Résumé : Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 nm, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by inhomogeneous shear banding. However, the individual shear banding events are strongly size-dependent, i.e. in larger pillars the deformation is controlled by nucleation of shear bands, but in smaller pillars it becomes propagation-controlled. On the other hand, the yield stress is essentially size-independent. Microbending tests show further advantages by amplifying size effects and minimizing artifacts. An interesting finding is that by microbending, a switch from highly inhomogeneous to fully homogeneous deformation is observed at an experimentally accessible size regime near 200 nm, whereas it is not accessible under microcompression, even at a sub-100 nm scale. These size effects are well interpreted by a micromechanical model, leading to a deformation map in the stress-size space. A physical picture of nanoscale shear localization process is also provided. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409005928