Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Shengrong Zhu
Documents disponibles écrits par cet auteur
Affiner la rechercheAn experimental and computational study of a swirl-stabilized premixed flame / Ashoke De in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 7 (Juillet 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 7 (Juillet 2010) . - 08 p.
Titre : An experimental and computational study of a swirl-stabilized premixed flame Type de document : texte imprimé Auteurs : Ashoke De, Auteur ; Shengrong Zhu, Auteur ; Sumanta Acharya, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Flames Swirling flow Velocimeters Vortices Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An unconfined strongly swirled flow is investigated for different Reynolds numbers using particle image velocimetry (PIV) and large eddy simulation (LES) with a thickened-flame (TF) model. Both reacting and nonreacting flow results are presented. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the experimental data. Also the predicted root mean square (rms) fluctuations exhibit a double-peak profile with one peak in the burnt and the other in the unburnt region. The measured and predicted heat release distributions are in qualitative agreement with each other and exhibit the highest values along the inner edge of the shear layer. The precessing vortex core (PVC) is clearly observed in both the nonreacting and reacting cases. However, it appears more axially elongated for the reacting cases and the oscillations in the PVC are damped with reactions. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] [article] An experimental and computational study of a swirl-stabilized premixed flame [texte imprimé] / Ashoke De, Auteur ; Shengrong Zhu, Auteur ; Sumanta Acharya, Auteur . - 2011 . - 08 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 7 (Juillet 2010) . - 08 p.
Mots-clés : Flames Swirling flow Velocimeters Vortices Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An unconfined strongly swirled flow is investigated for different Reynolds numbers using particle image velocimetry (PIV) and large eddy simulation (LES) with a thickened-flame (TF) model. Both reacting and nonreacting flow results are presented. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the experimental data. Also the predicted root mean square (rms) fluctuations exhibit a double-peak profile with one peak in the burnt and the other in the unburnt region. The measured and predicted heat release distributions are in qualitative agreement with each other and exhibit the highest values along the inner edge of the shear layer. The precessing vortex core (PVC) is clearly observed in both the nonreacting and reacting cases. However, it appears more axially elongated for the reacting cases and the oscillations in the PVC are damped with reactions. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013 [...] An experimental study of lean blowout with hydrogen-enriched fuels / Shengrong Zhu in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 4 (Avril 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 4 (Avril 2012) . - 10 p.
Titre : An experimental study of lean blowout with hydrogen-enriched fuels Type de document : texte imprimé Auteurs : Shengrong Zhu, Auteur ; Sumanta Acharya, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Chemiluminescence Flames Fuel Hydrogen Nitrogen compounds Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Lean premixed combustion is widely used to achieve a better compromise between nitric oxide (NOx) emissions and combustion efficiency (related to CO levels). However, combustor operation near the lean blowout (LBO) limit can render the flame unstable and lead to oscillations, flashback, or extinction, thereby limiting the potential range of lean combustion application. Recent interest in integrated gasification combined cycle plants and syngas combustion requires an improved understanding of the role of hydrogen on the combustion process. Therefore, in the present study, combustion of pure methane and blended methane-hydrogen with hydrogen-levels up to 80% by volume has been conducted in a swirl stabilized premixed combustor. Particle imaging velocimetry (PIV) and OH* chemiluminescence imaging have been used in this study. Results show that there is a single-ringed structure of internal recirculation zone (IRZ) in the non-reacting flow, while in the reacting flows, there is a more complex flow pattern with a two-celled IRZ structure in which the axial velocity near the center-axis is oriented downstream. As the equivalence ratio decreases, the width of IRZ decreases in methane flames while it increases in hydrogen-enriched flames, and the flame shape changes from conical to an elongated columnar shape, especially in hydrogen-enriched flames. There are two different modes of vortex breakdown observed, spiral mode in methane flames and bubble mode in hydrogen-enriched flames. These differences between the behavior of the methane-only and hydrogen-enriched flames lead to different behavior of the flame as it approaches the lean blowout. The differences in the mechanisms of LBO in pure methane and hydrogen-enriched premixed flames are examined and explained in the present study. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000004 [...] [article] An experimental study of lean blowout with hydrogen-enriched fuels [texte imprimé] / Shengrong Zhu, Auteur ; Sumanta Acharya, Auteur . - 2012 . - 10 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 4 (Avril 2012) . - 10 p.
Mots-clés : Chemiluminescence Flames Fuel Hydrogen Nitrogen compounds Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Lean premixed combustion is widely used to achieve a better compromise between nitric oxide (NOx) emissions and combustion efficiency (related to CO levels). However, combustor operation near the lean blowout (LBO) limit can render the flame unstable and lead to oscillations, flashback, or extinction, thereby limiting the potential range of lean combustion application. Recent interest in integrated gasification combined cycle plants and syngas combustion requires an improved understanding of the role of hydrogen on the combustion process. Therefore, in the present study, combustion of pure methane and blended methane-hydrogen with hydrogen-levels up to 80% by volume has been conducted in a swirl stabilized premixed combustor. Particle imaging velocimetry (PIV) and OH* chemiluminescence imaging have been used in this study. Results show that there is a single-ringed structure of internal recirculation zone (IRZ) in the non-reacting flow, while in the reacting flows, there is a more complex flow pattern with a two-celled IRZ structure in which the axial velocity near the center-axis is oriented downstream. As the equivalence ratio decreases, the width of IRZ decreases in methane flames while it increases in hydrogen-enriched flames, and the flame shape changes from conical to an elongated columnar shape, especially in hydrogen-enriched flames. There are two different modes of vortex breakdown observed, spiral mode in methane flames and bubble mode in hydrogen-enriched flames. These differences between the behavior of the methane-only and hydrogen-enriched flames lead to different behavior of the flame as it approaches the lean blowout. The differences in the mechanisms of LBO in pure methane and hydrogen-enriched premixed flames are examined and explained in the present study. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000004 [...]