Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Louis G. Hector Jr.
Documents disponibles écrits par cet auteur
Affiner la rechercheMicrostructure-based multiscale modeling of elevated temperature deformation in aluminum alloys / Paul E. Krajewski in Acta materialia, Vol. 58 N° 3 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1074–1086
Titre : Microstructure-based multiscale modeling of elevated temperature deformation in aluminum alloys Type de document : texte imprimé Auteurs : Paul E. Krajewski, Auteur ; Louis G. Hector Jr., Auteur ; Ningning Du, Auteur Année de publication : 2011 Article en page(s) : pp. 1074–1086 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Aluminum alloys Creep Superplasticity Grain boundaries Micromechanical modeling Résumé : A multiscale model for predicting elevated temperature deformation in Al–Mg alloys is presented. Constitutive models are generated from a theoretical methodology and used to investigate the effects of grain size on formability. Flow data are computed with a polycrystalline, microstructure-based model which accounts for grain boundary sliding, stress-induced diffusion, and dislocation creep. Favorable agreement is found between the computed flow data and elevated temperature tensile measurements. A creep constitutive model is then fit to the computed flow data and used in finite-element simulations of two simple gas pressure forming processes, where favorable results are observed. These results are fully consistent with gas pressure forming experiments, and suggest a greater role for constitutive models, derived largely from theoretical methodologies, in the design of Al alloys with enhanced elevated temperature formability. The methodology detailed herein provides a framework for incorporation of results from atomistic-scale models of dislocation creep and diffusion. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007125 [article] Microstructure-based multiscale modeling of elevated temperature deformation in aluminum alloys [texte imprimé] / Paul E. Krajewski, Auteur ; Louis G. Hector Jr., Auteur ; Ningning Du, Auteur . - 2011 . - pp. 1074–1086.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 3 (Fevrier 2010) . - pp. 1074–1086
Mots-clés : Aluminum alloys Creep Superplasticity Grain boundaries Micromechanical modeling Résumé : A multiscale model for predicting elevated temperature deformation in Al–Mg alloys is presented. Constitutive models are generated from a theoretical methodology and used to investigate the effects of grain size on formability. Flow data are computed with a polycrystalline, microstructure-based model which accounts for grain boundary sliding, stress-induced diffusion, and dislocation creep. Favorable agreement is found between the computed flow data and elevated temperature tensile measurements. A creep constitutive model is then fit to the computed flow data and used in finite-element simulations of two simple gas pressure forming processes, where favorable results are observed. These results are fully consistent with gas pressure forming experiments, and suggest a greater role for constitutive models, derived largely from theoretical methodologies, in the design of Al alloys with enhanced elevated temperature formability. The methodology detailed herein provides a framework for incorporation of results from atomistic-scale models of dislocation creep and diffusion. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007125