Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ju Li
Documents disponibles écrits par cet auteur
Affiner la rechercheAtomistic modeling of interfaces and their impact on microstructure and properties / Y. Mishin in Acta materialia, Vol. 58 N° 4 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 4 (Fevrier 2010) . - pp. 1117–1151
Titre : Atomistic modeling of interfaces and their impact on microstructure and properties Type de document : texte imprimé Auteurs : Y. Mishin, Auteur ; M. Asta, Auteur ; Ju Li, Auteur Année de publication : 2011 Article en page(s) : pp. 1117–1151 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Atomistic modeling Interatomic potentials First-principles methods Molecular dynamics Interfaces Résumé : Atomic-level modeling of materials provides fundamental insights into phase stability, structure and properties of crystalline defects, and to physical mechanisms of many processes ranging from atomic diffusion to interface migration. This knowledge often serves as a guide for the development of mesoscopic and macroscopic continuum models, with input parameters provided by atomistic models. This paper gives an overview of the most recent developments in the area of atomistic modeling with emphasis on interfaces and their impact on microstructure and properties of materials. Modern computer simulation methodologies are discussed and illustrated by several applications related to thermodynamic, kinetic and mechanical properties of materials. Existing challenges and future research directions in this field are outlined. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007526 [article] Atomistic modeling of interfaces and their impact on microstructure and properties [texte imprimé] / Y. Mishin, Auteur ; M. Asta, Auteur ; Ju Li, Auteur . - 2011 . - pp. 1117–1151.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 4 (Fevrier 2010) . - pp. 1117–1151
Mots-clés : Atomistic modeling Interatomic potentials First-principles methods Molecular dynamics Interfaces Résumé : Atomic-level modeling of materials provides fundamental insights into phase stability, structure and properties of crystalline defects, and to physical mechanisms of many processes ranging from atomic diffusion to interface migration. This knowledge often serves as a guide for the development of mesoscopic and macroscopic continuum models, with input parameters provided by atomistic models. This paper gives an overview of the most recent developments in the area of atomistic modeling with emphasis on interfaces and their impact on microstructure and properties of materials. Modern computer simulation methodologies are discussed and illustrated by several applications related to thermodynamic, kinetic and mechanical properties of materials. Existing challenges and future research directions in this field are outlined. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007526 Phase field modeling of defects and deformation / Yunzhi Wang in Acta materialia, Vol. 58 N° 4 (Fevrier 2010)
[article]
in Acta materialia > Vol. 58 N° 4 (Fevrier 2010) . - pp. 1212–1235
Titre : Phase field modeling of defects and deformation Type de document : texte imprimé Auteurs : Yunzhi Wang, Auteur ; Ju Li, Auteur Année de publication : 2011 Article en page(s) : pp. 1212–1235 Note générale : Métallurgie Langues : Anglais (eng) Mots-clés : Dislocation Twinning Martensitic transformation Plasticity Fracture Résumé : New perspectives on the phase field approach in modeling deformation and fracture at the fundamental defect level are reviewed. When applied at sub-angstrom length scales the phase field crystal (PFC) model is able to describe thermally averaged atomic configurations of defects and defect processes on diffusional timescales. When applied at individual defect levels the microscopic phase field (MPF) model is a superset of the Cahn–Hilliard description of chemical inhomogeneities and the Peierls (cohesive zone) description of displacive inhomogeneities. A unique feature associated with the MPF model is its ability to predict fundamental properties of individual defects such as size, formation energy, saddle point configuration and activation energy of defect nuclei, and the micromechanisms of their mutual interactions, directly using ab initio calculations as model inputs. When applied at the mesoscopic level the coarse grained phase field (CGPF) models have the ability to predict the evolution of microstructures consisting of a large assembly of both chemically and mechanically interacting defects through coupled displacive and diffusional mechanisms. It is noted that the purpose of the MPF model is fundamentally different from that of the CGPF models. The latter have been used primarily to study microstructural evolution with user-supplied linear response rate laws, defect energies and mobilities. Combined phase field simulations hold great promise in modeling deformation and fracture with complex microstructural and chemical interactions. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007447 [article] Phase field modeling of defects and deformation [texte imprimé] / Yunzhi Wang, Auteur ; Ju Li, Auteur . - 2011 . - pp. 1212–1235.
Métallurgie
Langues : Anglais (eng)
in Acta materialia > Vol. 58 N° 4 (Fevrier 2010) . - pp. 1212–1235
Mots-clés : Dislocation Twinning Martensitic transformation Plasticity Fracture Résumé : New perspectives on the phase field approach in modeling deformation and fracture at the fundamental defect level are reviewed. When applied at sub-angstrom length scales the phase field crystal (PFC) model is able to describe thermally averaged atomic configurations of defects and defect processes on diffusional timescales. When applied at individual defect levels the microscopic phase field (MPF) model is a superset of the Cahn–Hilliard description of chemical inhomogeneities and the Peierls (cohesive zone) description of displacive inhomogeneities. A unique feature associated with the MPF model is its ability to predict fundamental properties of individual defects such as size, formation energy, saddle point configuration and activation energy of defect nuclei, and the micromechanisms of their mutual interactions, directly using ab initio calculations as model inputs. When applied at the mesoscopic level the coarse grained phase field (CGPF) models have the ability to predict the evolution of microstructures consisting of a large assembly of both chemically and mechanically interacting defects through coupled displacive and diffusional mechanisms. It is noted that the purpose of the MPF model is fundamentally different from that of the CGPF models. The latter have been used primarily to study microstructural evolution with user-supplied linear response rate laws, defect energies and mobilities. Combined phase field simulations hold great promise in modeling deformation and fracture with complex microstructural and chemical interactions. DEWEY : 669 ISSN : 1359-6454 En ligne : http://www.sciencedirect.com/science/article/pii/S1359645409007447